10 research outputs found

    Microscopy in Veterinary Clinical Pathology: Attempts to increase feedback

    Get PDF

    Polymorphisms in the serotonin transporter gene and circulating concentrations of neurotransmitters in Cavalier King Charles Spaniels with myxomatous mitral valve disease

    Get PDF
    Background The neurotransmitter serotonin (5-HT) affects valvular degeneration and dogs with myxomatous mitral valve disease (MMVD) exhibit alterations in 5-HT signaling. In Maltese dogs, 3 single nucleotide polymorphisms (SNPs) in the 5-HT transporter (SERT) gene are suggested to associate with MMVD. Hypothesis/Objectives Determine the association of SERT polymorphisms on MMVD severity and serum 5-HT concentration in Cavalier King Charles Spaniels (CKCS). Additionally, investigate the association between selected clinical and hematologic variables and serum 5-HT and assess the correlation between HPLC and ELISA measurements of serum 5-HT. Animals Seventy-one CKCS (42 females and 29 males; 7.8 [4.7;9.9] years (median [Q1;Q3])) in different MMVD stages. Methods This prospective study used TaqMan genotyping assays to assess SERT gene polymorphisms. Neurotransmitter concentrations were assessed by HPLC and ELISA. Results TaqMan analyses identified none of the selected SERT polymorphisms in any of the CKCS examined. Serum 5-HT was associated with platelet count (P < .001) but not MMVD severity, age or medical therapy and did not correlate with serum concentration of the 5-HT metabolite, 5-hydroxyindoleacetic acid. The ELISA serum 5-HT correlated with HPLC measurements (rho = .87; P < .0001) but was lower (mean difference = -22 ng/mL; P = .02) independent of serum 5-HT concentration (P = .2). Conclusions and Clinical Importance Selected SERT SNPs associated with MMVD in Maltese dogs were not found in CKCS and only platelet count influenced serum 5-HT concentration. These SNPs are unlikely to be associated with MMVD pathophysiology or serum 5-HT concentration in CKCS. HPLC and ELISA serum 5-HT demonstrated good correlation but ELISA systematically underestimated 5-HT

    Proteomic profiling of the thrombin-activated canine platelet secretome (CAPS).

    Get PDF
    Domestic dogs share the same environment as humans, and they represent a valuable animal model to study naturally-occurring human disease. Platelet proteomics holds promise for the discovery of biomarkers that capture the contribution of platelets to the pathophysiology of many disease states, however, canine platelet proteomic studies are lacking. Our study objectives were to establish a protocol for proteomic identification and quantification of the thrombin-activated canine platelet secretome (CAPS), and to compare the CAPS proteins to human and murine platelet proteomic data. Washed platelets were isolated from healthy dogs, and stimulated with saline (control) or gamma-thrombin (releasate). Proteins were separated by SDS-page, trypsin-digested and analyzed by liquid chromatography and tandem mass spectrometry (MS). CAPS proteins were defined as those with a MS1-abundance ratio of two or more for releasate vs. unstimulated saline control. A total of 1,918 proteins were identified, with 908 proteins common to all dogs and 693 characterized as CAPS proteins. CAPS proteins were similar to human and murine platelet secretomes and were highly represented in hemostatic pathways. Differences unique to CAPS included replacement of platelet factor 4 with other cleavage products of platelet basic protein (e.g. interleukin-8), novel proteins (e.g. C-C motif chemokine 14), and proteins in relatively high (e.g. protease nexin-1) or low (e.g. von Willebrand factor) abundance. This study establishes the first in-depth platelet releasate proteome from healthy dogs with a reference database of 693 CAPS proteins. Similarities between CAPS and the human secretome confirm the utility of dogs as translational models of human disease, but we also identify differences unique to canine platelets. Our findings provide a resource for further investigations into disease-related CAPS profiles, and for comparative pathway analyses of platelet activation among species
    corecore