1,097 research outputs found

    Thermo-Rotational Instability in Plasma Disks Around Compact Objects

    Full text link
    Differentially rotating plasma disks, around compact objects, that are imbedded in a ``seed'' magnetic field are shown to develop vertically localized ballooning modes that are driven by the combined radial gradient of the rotation frequency and vertical gradients of the plasma density and temperature. When the electron mean free path is shorter than the disk height and the relevant thermal conductivity can be neglected, the vertical particle flows produced by of these modes have the effect to drive the density and temperature profiles toward the ``adiabatic condition'' where ηT≡(dlnT/dz)/(dlnn/dz)=2/3\eta_{T}\equiv(dlnT/dz)/(dlnn/dz)=2/3. Here TT is the plasma temperature and nn the particle density. The faster growth rates correspond to steeper temperature profiles (ηT>2/3)(\eta_{T}>2/3) such as those produced by an internal (e.g., viscous) heating process. In the end, ballooning modes excited for various values of ηT\eta_{T} can lead to the evolution of the disk into a different current carrying configuration such as a sequence of plasma rings

    Interpretation of the I-Regime and transport associated with relevant heavy particle modes

    Get PDF
    The excitation of a novel kind of heavy particle [1, 2] mode at the edge of the plasma column is considered as the signature of the I-con nement Regime [3{7]. The outward transport of impurities produced by this mode is in fact consistent with the observed expulsion of them from the main body of the plasma column (a high degree of plasma purity is a necessary feature for fusion burning plasmas capable of approaching ignition). Moreover, the theoretically predicted mode phase velocity, in the direction of the electron diamagnetic velocity, has been con rmed by relevant experimental analyses [8] of the excited uctuations (around 200 kHz). The plasma \spontaneous rotation" in the direction of the ion diamagnetic velocity is also consistent, according to the Accretion Theory [9] of this phenomenon, with the direction of the mode phase velocity. Another feature of the mode that predicted by the theory is that the I-Regime exhibits a knee of the ion temperature at the edge of the plasma column but not one of the particle density as the mode excitation factor is the relative main ion temperature gradient exceeding the local relative density gradient. The net plasma current density appearing in the saturation stage of the relevant instability, where the induced particle and energy uxes are drastically reduced, is associated with the signi cant amplitudes of the poloidal magnetic eld uctuations [6, 7] observed to accompany the density uctuations. The theoretical implications of the signi cant electron temperature uctuations [10] observed are discussed.United States. Dept. of Energ

    Active black holes: Relevant plasma structures, regimes and processes involving all phase space

    Get PDF
    The presented theory is motivated by the growing body of experimental information on the characteristics, connected with relevant spectral, time, and space resolutions, of the radiation emission from objects considered as rotating black holes. In the immediate surroundings of these objects, three plasma regions are identified: an innermost Buffer Region, an intermediate Three-regime Region, and a Structured Peripheral Region. In the last region, a Composite Disk Structure made of a sequence of plasma rings corresponding to the formation of closed magnetic surfaces is considered to be present and to allow intermittent accretion flows along the relevant separatrices. The nonlinear “Master Equation” describing composite disk structures is derived and solved in appropriate asymptotic limits. A ring configuration, depending on the state of the plasma at the microscopic level: (i) can be excluded from forming given the strongly nonthermal nature of the electron distribution (in momentum space) within the Three-regime Region allowing the onset of a spiral structure; the observed High Frequency Quasi Periodic Oscillations are associated with these tridimensional structures; (ii) may be allowed to propagate to the outer edge of the Buffer Region where successive rings carrying currents in opposite directions are ejected vertically (in opposite directions) and originate the observed jets; or (iii) penetrates in the Three-regime Region and is dissipated before reaching the outer edge of the Buffer Region. The absence of a coherent composite disk structure guiding accretion in the presence of a significant magnetic field background is suggested to characterize quiescent black holes.United States. Dept. of Energ

    Ballooning Modes in Thin Accretion Disks: Limits for their Excitation

    Full text link
    The conditions that limit the possible excitation of ideal MHD axisymmetric ballooning modes in thin accretion disks are discussed. As shown earlier by Coppi and Coppi (2001), these modes are well-localized in the vertical direction but have characteristic oscillatory and non-localized profiles in the radial direction. A necessary condition for their excitation is that the magnetic energy be considerably lower than the thermal energy. Even when this is satisfied, there remains the problem of identifying the possible physical factors which can make the considered modes radially localized. The general solution of the normal mode equation describing the modes is given, showing that it is characterized by a discrete spectrum of eigensolutions. The growth rates are reduced and have a different scaling relative to those of the "long-cylinder" modes, commonly known as the Magneto Rotational Instability, that have been previously studied.Comment: 25 pages, 7 figures. Accepted to Ap

    Kinetics of electron-positron pair plasmas using an adaptive Monte Carlo method

    Get PDF
    A new algorithm for implementing the adaptive Monte Carlo method is given. It is used to solve the relativistic Boltzmann equations that describe the time evolution of a nonequilibrium electron-positron pair plasma containing high-energy photons and pairs. The collision kernels for the photons as well as pairs are constructed for Compton scattering, pair annihilation and creation, bremsstrahlung, and Bhabha & Moller scattering. For a homogeneous and isotropic plasma, analytical equilibrium solutions are obtained in terms of the initial conditions. For two non-equilibrium models, the time evolution of the photon and pair spectra is determined using the new method. The asymptotic numerical solutions are found to be in a good agreement with the analytical equilibrium states. Astrophysical applications of this scheme are discussed.Comment: 43 pages, 7 postscript figures, to appear in the Astrophysical Journa

    The QUEST-La Silla AGN Variability Survey

    Full text link
    We present the characterization and initial results from the QUEST-La Silla AGN variability survey. This is an effort to obtain well sampled optical light curves in extragalactic fields with unique multi-wavelength observations. We present photometry obtained from 2010 to 2012 in the XMM-COSMOS field, which was observed over 150 nights using the QUEST camera on the ESO-Schmidt telescope. The survey uses a broadband filter, the QQ-band, similar to the union of the gg and the rr filters, achieving an intrinsic photometric dispersion of 0.050.05 mag, and a systematic error of 0.050.05 mag in the zero-point. Since some detectors of the camera show significant non-linearity, we use a linear correlation to fit the zero-points as a function of the instrumental magnitudes, thus obtaining a good correction to the non-linear behavior of these detectors. We obtain good photometry to an equivalent limiting magnitude of r∌20.5r\sim 20.5. Studying the optical variability of X-ray detected sources in the XMM-COSMOS field, we find that the survey is ∌75−80\sim75-80% complete to magnitudes r∌20r\sim20, and ∌67\sim67% complete to a magnitude r∌21r\sim21. The determination and parameterization of the structure function (SFnorm(τ)=AÏ„Îł{SF}_{norm}(\tau) = A \tau^{\gamma}) of the variable sources shows that most BL AGN are characterized by A>0.1A > 0.1 and Îł>0.025\gamma > 0.025. It is further shown that variable NL AGN and GAL sources occupying the same parameter space in AA and Îł\gamma are very likely to correspond to obscured or low luminosity AGN. Our samples are, however, small, and we expect to revisit these results using larger samples with longer light curves obtained as part of our ongoing survey.Comment: Accepted for publication in Ap
    • 

    corecore