321 research outputs found

    Black hole and de Sitter solutions in a covariant renormalizable field theory of gravity

    Full text link
    It is shown that Schwarzschild black hole and de Sitter solutions exist as exact solutions of a recently proposed relativistic covariant formulation of (power-counting) renormalizable gravity with a fluid. The formulation without a fluid is also presented here. The stability of the solutions is studied and their corresponding entropies are computed, by using the covariant Wald method. The area law is shown to hold both for the Schwarzschild and for the de Sitter solutions found, confirming that, for the β=1\beta=1 case, one is dealing with a minimal modification of GR.Comment: 7 paages, latex fil

    Neutrino oscillation phase dynamically induced by f(R)-gravity

    Full text link
    The gravitational phase shift of neutrino oscillation can be discussed in the framework of f(R)-gravity. We show that the shift of quantum mechanical phase can depend on the given f(R)-theory that we choose. This fact is general and could constitute a fundamental test to discriminate among the various alternative relativistic theories of gravity. Estimations of ratio between the gravitational phase shift and the standard phase are carried out for the electronic Solar neutrinos.Comment: 4 page

    Modified f(R) gravity from scalar-tensor theory and inhomogeneous EoS dark energy

    Full text link
    The reconstruction of f(R)-gravity is showed by using an auxiliary scalar field in the context of cosmological evolution, this development provide a way of reconstruct the form of the function f (R) for a given evolution of the Hubble parameter. In analogy, f(R)-gravity may be expressed by a perfect fluid with an inhomogeneous equation of state that depends on the Hubble parameter and its derivatives. This mathematical equivalence that may confuse about the origin of the mechanism that produces the current acceleration, and possibly the whole evolution of the Hubble parameter, is shown here.Comment: 8 page

    Gravitational Waves Astronomy: a cornerstone for gravitational theories

    Full text link
    Realizing a gravitational wave (GW) astronomy in next years is a great challenge for the scientific community. By giving a significant amount of new information, GWs will be a cornerstone for a better understanding of gravitational physics. In this paper we re-discuss that the GW astronomy will permit to solve a captivating issue of gravitation. In fact, it will be the definitive test for Einstein's general relativity (GR), or, alternatively, a strong endorsement for extended theories of gravity (ETG).Comment: To appear in Proceedings of the Workshop "Cosmology, the Quantum Vacuum and Zeta Functions" for the celebration of Emilio Elizalde's sixtieth birthday, Barcelona, March 8-10, 201

    Dark energy in modified Gauss-Bonnet gravity: late-time acceleration and the hierarchy problem

    Full text link
    Dark energy cosmology is considered in a modified Gauss-Bonnet (GB) model of gravity where an arbitrary function of the GB invariant, f(G)f(G), is added to the General Relativity action. We show that such theory is endowed with a quite rich cosmological structure: it may naturally lead to an effective cosmological constant, quintessence or phantom cosmic acceleration, with a possible transition from deceleration to acceleration. It is demonstrated in the paper that this theory is perfectly viable, since it is compliant with Solar System constraints. Specific properties of f(G)f(G) gravity in a de Sitter universe, such as dS and SdS solutions, their entropy and its explicit one-loop quantization are studied. The issue of a possible solution of the hierarchy problem in modified gravities is addressed too.Comment: LaTeX file 20 pages, new subsections are adde

    Viscous Fluids and Gauss-Bonnet Modified Gravity

    Full text link
    We study effects of cosmic fluids on finite-time future singularities in modified f(R,G)f(R,G)-gravity, where RR and GG are the Ricci scalar and the Gauss-Bonnet invariant, respectively. We consider the fluid equation of state in the general form, ω=ω(ρ)\omega=\omega(\rho), and we suppose the existence of a bulk viscosity. We investigate quintessence region (ω>1\omega>-1) and phantom region (ω<1\omega<-1) and the possibility to change or avoid the singularities in f(R,G)f(R,G)-gravity. Finally, we study the inclusion of quantum effects in large curvatures regime.Comment: 14 page

    Vacuum energy fluctuations, the induced cosmological constant and cosmological reconstruction in non-minimal modified gravity models

    Get PDF
    The one-loop effective action for non-minimal scalar modified gravity on de Sitter background with a constant scalar field is found. The corresponding induced cosmological constant is evaluated. It is shown that quantum effects in non-minimal modified gravity may induce an early-time de Sitter universe even in the situation when such solution does not occur on the classical level. Classical reconstruction of the theory is presented in such a way that the resulting theory has a cosmological solution unifying early-time inflation with late-time acceleration.Comment: Latex file, 14 pages, no figure
    corecore