85 research outputs found

    Challenges in the reuse and upgrade of Pier Luigi Nervi 's structures

    Get PDF
    The paper presents the overall objectives of a funded research program for the development of a Conservation Plan (CP) for the two halls by Pier Luigi Nervi of the Turin Exhibition Center. The Turin Exhibition Center was conceived immediately after the Second World War to host primarily the annual Automobile Show, in connection with the presence in Turin of the FIAT motor company. The two main pavilions of the Center (Halls B and C) are outstanding examples of a pioneering use, of new advanced methods in reinforced concrete construction, combining innovative prefabrication procedures and the re-invention by Nervi of ferrocement, used to form extremely thin elements. The CP is expected to push and contribute to the preservation of the halls designed and built by Nervi, with special emphasis on structural and seismic vulnerability aspects, also due to concerns raised on the durability of concrete materials and technologies. Re-using these buildings entails the challenge to guarantee new extended service life to concrete structures built many decades ago and faces the need for a seismic assessment of these structures, in compliance to recent Italian standards

    Repurposing of the Antiepileptic Drug Levetiracetam to Restrain Neuroendocrine Prostate Cancer and Inhibit Mast Cell Support to Adenocarcinoma

    Get PDF
    A relevant fraction of castration-resistant prostate cancers (CRPC) evolve into fatal neuroendocrine (NEPC) tumors in resistance to androgen deprivation and/or inhibitors of androgen receptor pathway. Therefore, effective drugs against both CRPC and NEPC are needed. We have previously described a dual role of mast cells (MCs) in prostate cancer, being capable to promote adenocarcinoma but also to restrain NEPC. This finding suggests that a molecule targeting both MCs and NEPC cells could be effective against prostate cancer. Using an in silico drug repurposing approach, here we identify the antiepileptic drug levetiracetam as a potential candidate for this purpose. We found that the protein target of levetiracetam, SV2A, is highly expressed by both NEPC cells and MCs infiltrating prostate adenocarcinoma, while it is low or negligible in adenocarcinoma cells. In vitro, levetiracetam inhibited the proliferation of NEPC cells and the degranulation of MCs. In mice bearing subcutaneous tumors levetiracetam was partially active on both NEPC and adenocarcinoma, the latter effect due to the inhibition of MMP9 release by MCs. Notably, in TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) mice subjected to surgical castration to mimic androgen deprivation therapy, levetiracetam reduced onset and frequency of both high grade prostatic intraepithelial neoplasia, adenocarcinoma and NEPC, thus increasing the number of cured mice showing only signs of tumor regression. Our results demonstrate that levetiracetam can directly restrain NEPC development after androgen deprivation, and that it can also block adenocarcinoma progression through the inhibition of some MCs functions. These findings open the possibility of further testing levetiracetam for the therapy of prostate cancer or of MC-mediated diseases

    Xeno-free cultured mesenchymal stromal cells release extracellular vesicles with a "therapeutic" miRNA cargo ameliorating cartilage inflammation in vitro

    Get PDF
    Rationale: Mesenchymal stromal cells (MSCs)-derived extracellular vesicles (EVs) emerged as an innovative strategy for the treatment of chronic disorders such as osteoarthritis (OA). Biological activity of EVs is generally driven by their cargo, which might be influenced by microenvironment. Therefore, pre-conditioning strategies, including modifications in culture conditions or oxygen tension could directly impact on MSCs paracrine activity. In this study we selected an appropriate preconditioning system to induce cells to perform the most suitable therapeutic response by EV-encapsulated bioactive factors. Methods: A xeno-free supplement (XFS) was used for isolation and expansion of MSCs and compared to conventional fetal bovine serum (FBS) culture. Bone Marrow-derived MSCs (BMSCs) were pre-conditioned under normoxia (20% O2) or under hypoxia (1% O2) and EVs production was evaluated. Anti-OA activity was evaluated by using an in vitro inflammatory model. miRNA content was also explored, to select putative miRNA that could be involved in a biological function. Results: Modulation of IL-6, IL-8, COX-2 and PGE2 was evaluated on hACs simultaneously treated with IL-1a and BMSC-derived EVs. FBS-sEVs exerted a blunt inhibitory effect, while a strong anti-inflammatory outcome was achieved by XFS-sEVs. Interestingly, in both cases hypoxia pre-conditioning allowed to increase EVs effectiveness. Analysis of miRNA content showed the upregulation in XFS-hBMSC-derived EVs of miRNA known to have a chondroprotective role, such as let-7b-5p, miR-17, miR-145, miR-21-5p, miR-214-3p, miR-30b-5p, miR-30c-5p. Activated pathways and target genes were investigated in silico and upregulated miRNAs functionally validated in target cells. MiR-145 and miR-214 were found to protect chondrocytes from IL-1a-induced inflammation and to reduce production of pro-inflammatory cytokines. Conclusions: XFS medium was found to be suitable for isolation and expansion of MSCs, secreting EVs with a therapeutic cargo. The application of cells cultured exclusively in XFS overcomes issues of safety associated with serum-containing media and makes ready-to-use clinical therapies more accessible

    Characterization of a new trabectedin-resistant myxoid liposarcoma cell line that shows collateral sensitivity to methylating agents

    Get PDF
    Myxoid Liposarcomas (MLS), characterized by the expression of FUS-CHOP fusion gene are clinically very sensitive to the DNA binding antitumor agent, trabectedin. However, resistance eventually occurs, preventing disease eradication. To investigate the mechanisms of resistance, a trabectedin resistant cell line, 402-91/ET, was developed. The resistance to trabectedin was not related to the expression of MDR related proteins, uptake/efflux of trabectedin or GSH levels that were similar in parental and resistant cells. The 402-91/ET cells were hypersensitive to UV light because of a nucleotide excision repair defect: XPG complementation decreased sensitivity to UV rays, but only partially to trabectedin. 402-91/ET cells showed collateral sensitivity to temozolomide due to the lack of O(6) -methylguanine-DNA-methyltransferase (MGMT) activity, related to the hypermethylation of MGMT promoter. In 402-91 cells chromatin immunoprecipitation (ChIP) assays showed that FUS-CHOP was bound to the PTX3 and FN1 gene promoters, as previously described, and trabectedin caused FUS-CHOP detachment from DNA. Here we report that, in contrast, in 402-91/ET cells, FUS-CHOP was not bound to these promoters. Differences in the modulation of transcription of genes involved in different pathways including signal transduction, apoptosis and stress response between the two cell lines were found. Trabectedin activates the transcription of genes involved in the adipogenic-program such as c/EBPα and β, in 402-91 but not in 402-91/ET cell lines. The collateral sensitivity of 402-91/ET to temozolomide provides the rationale to investigate the potential use of methylating agents in MLS patients resistant to trabectedin

    Nitric oxide synthetic pathway in red blood cells Is impaired in coronary artery disease

    Get PDF
    Background:All the enzymatic factors/cofactors involved in nitric oxide (NO) metabolism have been recently found in red blood cells. Increased oxidative stress impairs NO bioavailability and has been described in plasma of coronary artery disease (CAD) patients. The aim of the study was to highlight a potential dysfunction of the metabolic profile of NO in red blood cells and in plasma from CAD patients compared with healthy controls.Methods:We determined L-arginine/NO pathway by liquid-chromatography tandem mass spectrometry and high performance liquid chromatography methods. The ratio of oxidized and reduced forms of glutathione, as index of oxidative stress, was measured by liquid-chromatography tandem mass spectrometry method. NO synthase expression and activity were evaluated by immunofluorescence staining and ex-vivo experiments of L-[15N2]arginine conversion to L-[15N]citrulline respectively.Results:Increased amounts of asymmetric and symmetric dimethylarginines were found both in red blood cells and in plasma of CAD patients in respect to controls. Interestingly NO synthase expression and activity were reduced in CAD red blood cells. In contrast, oxidized/reduced glutathione ratio was increased in CAD and was associated to arginase activity.Conclusion:Our study analyzed for the first time the whole metabolic pathway of L-arginine/NO, both in red blood cells and in plasma, highlighting an impairment of NO pathway in erythrocytes from CAD patients, associated with decreased NO synthase expression/activity and increased oxidative stress

    Nitric oxide synthetic pathway in patients with microvascular angina and its relations with oxidative stress

    Get PDF
    A decreased nitric oxide (NO) bioavailability and an increased oxidative stress play a pivotal role in different cardiovascular pathologies. As red blood cells (RBCs) participate in NO formation in the bloodstream, the aim of this study was to outline the metabolic profile of L-arginine (Arg)/NO pathway and of oxidative stress status in RBCs and in plasma of patients with microvascular angina (MVA), investigating similarities and differences with respect to coronary artery disease (CAD) patients or healthy controls (Ctrl). Analytes involved in Arg/NO pathway and the ratio of oxidized and reduced forms of glutathione were measured by LC-MS/MS. The arginase and the NO synthase (NOS) expression were evaluated by immunofluorescence staining. RBCs from MVA patients show increased levels of NO synthesis inhibitors, parallel to that found in plasma, and a reduction of NO synthase expression. When summary scores were computed, both patient groups were associated with a positive oxidative score and a negative NO score, with the CAD group located in a more extreme position with respect to Ctrl. This finding points out to an impairment of the capacity of RBCs to produce NO in a pathological condition characterized mostly by alterations at the microvascular bed with no significant coronary stenosis

    Re-education of Tumor-Associated Macrophages by CXCR2 Blockade Drives Senescence and Tumor Inhibition in Advanced Prostate Cancer

    Get PDF
    Tumor-associated macrophages (TAMs) represent a major component of the tumor microenvironment supporting tumorigenesis. TAMs re-education has been proposed as a strategy to promote tumor inhibition. However, whether this approach may work in prostate cancer is unknown. Here we find that Pten-null prostate tumors are strongly infiltrated by TAMs expressing C-X-C chemokine receptor type 2 (CXCR2), and activation of this receptor through CXCL2 polarizes macrophages toward an anti-inflammatory phenotype. Notably, pharmacological blockade of CXCR2 receptor by a selective antagonist promoted the re-education of TAMs toward a pro-inflammatory phenotype. Strikingly, CXCR2 knockout monocytes infused in Ptenpc−/−; Trp53pc−/− mice differentiated in tumor necrosis factor alpha (TNF-α)-releasing pro-inflammatory macrophages, leading to senescence and tumor inhibition. Mechanistically, PTEN-deficient tumor cells are vulnerable to TNF-α-induced senescence, because of an increase of TNFR1. Our results identify TAMs as targets in prostate cancer and describe a therapeutic strategy based on CXCR2 blockade to harness anti-tumorigenic potential of macrophages against this disease. © 2019 The Author(s) Di Mitri et al. show that CXCR2 blockade in prostate cancer triggers TAMs re-education, leading to tumor inhibition. CXCR2-KO monocytes infused in Ptenpc−/−; Trp53pc−/− tumor-bearing mice differentiate into TNFα-releasing pro-inflammatory macrophages that induce senescence in tumor cells. PTEN-null tumors display higher sensitivity to TNF-α-induced senescence because of TNFR1 upregulation

    ETS Transcription Factors Control Transcription of EZH2 and Epigenetic Silencing of the Tumor Suppressor Gene Nkx3.1 in Prostate Cancer

    Get PDF
    ETS transcription factors regulate important signaling pathways involved in cell differentiation and development in many tissues and have emerged as important players in prostate cancer. However, the biological impact of ETS factors in prostate tumorigenesis is still debated.We performed an analysis of the ETS gene family using microarray data and real-time PCR in normal and tumor tissues along with functional studies in normal and cancer cell lines to understand the impact in prostate tumorigenesis and identify key targets of these transcription factors. We found frequent dysregulation of ETS genes with oncogenic (i.e., ERG and ESE1) and tumor suppressor (i.e., ESE3) properties in prostate tumors compared to normal prostate. Tumor subgroups (i.e., ERG(high), ESE1(high), ESE3(low) and NoETS tumors) were identified on the basis of their ETS expression status and showed distinct transcriptional and biological features. ERG(high) and ESE3(low) tumors had the most robust gene signatures with both distinct and overlapping features. Integrating genomic data with functional studies in multiple cell lines, we demonstrated that ERG and ESE3 controlled in opposite direction transcription of the Polycomb Group protein EZH2, a key gene in development, differentiation, stem cell biology and tumorigenesis. We further demonstrated that the prostate-specific tumor suppressor gene Nkx3.1 was controlled by ERG and ESE3 both directly and through induction of EZH2.These findings provide new insights into the role of the ETS transcriptional network in prostate tumorigenesis and uncover previously unrecognized links between aberrant expression of ETS factors, deregulation of epigenetic effectors and silencing of tumor suppressor genes. The link between aberrant ETS activity and epigenetic gene silencing may be relevant for the clinical management of prostate cancer and design of new therapeutic strategies
    • …
    corecore