20 research outputs found

    Observable Optimal State Points of Sub-additive Potentials

    Full text link
    For a sequence of sub-additive potentials, Dai [Optimal state points of the sub-additive ergodic theorem, Nonlinearity, 24 (2011), 1565-1573] gave a method of choosing state points with negative growth rates for an ergodic dynamical system. This paper generalizes Dai's result to the non-ergodic case, and proves that under some mild additional hypothesis, one can choose points with negative growth rates from a positive Lebesgue measure set, even if the system does not preserve any measure that is absolutely continuous with respect to Lebesgue measure.Comment: 16 pages. This work was reported in the summer school in Nanjing University. In this second version we have included some changes suggested by the referee. The final version will appear in Discrete and Continuous Dynamical Systems- Series A - A.I.M. Sciences and will be available at http://aimsciences.org/journals/homeAllIssue.jsp?journalID=

    Integrate and Fire Neural Networks, Piecewise Contractive Maps and Limit Cycles

    Full text link
    We study the global dynamics of integrate and fire neural networks composed of an arbitrary number of identical neurons interacting by inhibition and excitation. We prove that if the interactions are strong enough, then the support of the stable asymptotic dynamics consists of limit cycles. We also find sufficient conditions for the synchronization of networks containing excitatory neurons. The proofs are based on the analysis of the equivalent dynamics of a piecewise continuous Poincar\'e map associated to the system. We show that for strong interactions the Poincar\'e map is piecewise contractive. Using this contraction property, we prove that there exist a countable number of limit cycles attracting all the orbits dropping into the stable subset of the phase space. This result applies not only to the Poincar\'e map under study, but also to a wide class of general n-dimensional piecewise contractive maps.Comment: 46 pages. In this version we added many comments suggested by the referees all along the paper, we changed the introduction and the section containing the conclusions. The final version will appear in Journal of Mathematical Biology of SPRINGER and will be available at http://www.springerlink.com/content/0303-681

    Simultaneous Continuation of Infinitely Many Sinks Near a Quadratic Homoclinic Tangency

    Full text link
    We prove that the C3C^3 diffeomorphisms on surfaces, exhibiting infinitely many sinksnear the generic unfolding of a quadratic homoclinic tangency of a dissipative saddle, can be perturbed along an infinite dimensional manifold of C3C^3 diffeomorphisms such that infinitely many sinks persist simultaneously. On the other hand, if they are perturbed along one-parameter families that unfold generically the quadratic tangencies, then at most a finite number of those sinks have continuation

    Invariant manifolds and equilibrium states for non-uniformly hyperbolic horseshoes

    Full text link
    In this paper we consider horseshoes containing an orbit of homoclinic tangency accumulated by periodic points. We prove a version of the Invariant Manifolds Theorem, construct finite Markov partitions and use them to prove the existence and uniqueness of equilibrium states associated to H\"older continuous potentials.Comment: 33 pages, 6 figure
    corecore