20 research outputs found
Observable Optimal State Points of Sub-additive Potentials
For a sequence of sub-additive potentials, Dai [Optimal state points of the
sub-additive ergodic theorem, Nonlinearity, 24 (2011), 1565-1573] gave a method
of choosing state points with negative growth rates for an ergodic dynamical
system. This paper generalizes Dai's result to the non-ergodic case, and proves
that under some mild additional hypothesis, one can choose points with negative
growth rates from a positive Lebesgue measure set, even if the system does not
preserve any measure that is absolutely continuous with respect to Lebesgue
measure.Comment: 16 pages. This work was reported in the summer school in Nanjing
University. In this second version we have included some changes suggested by
the referee. The final version will appear in Discrete and Continuous
Dynamical Systems- Series A - A.I.M. Sciences and will be available at
http://aimsciences.org/journals/homeAllIssue.jsp?journalID=
Integrate and Fire Neural Networks, Piecewise Contractive Maps and Limit Cycles
We study the global dynamics of integrate and fire neural networks composed
of an arbitrary number of identical neurons interacting by inhibition and
excitation. We prove that if the interactions are strong enough, then the
support of the stable asymptotic dynamics consists of limit cycles. We also
find sufficient conditions for the synchronization of networks containing
excitatory neurons. The proofs are based on the analysis of the equivalent
dynamics of a piecewise continuous Poincar\'e map associated to the system. We
show that for strong interactions the Poincar\'e map is piecewise contractive.
Using this contraction property, we prove that there exist a countable number
of limit cycles attracting all the orbits dropping into the stable subset of
the phase space. This result applies not only to the Poincar\'e map under
study, but also to a wide class of general n-dimensional piecewise contractive
maps.Comment: 46 pages. In this version we added many comments suggested by the
referees all along the paper, we changed the introduction and the section
containing the conclusions. The final version will appear in Journal of
Mathematical Biology of SPRINGER and will be available at
http://www.springerlink.com/content/0303-681
Simultaneous Continuation of Infinitely Many Sinks Near a Quadratic Homoclinic Tangency
We prove that the diffeomorphisms on surfaces, exhibiting infinitely
many sinksnear the generic unfolding of a quadratic homoclinic tangency of a
dissipative saddle, can be perturbed along an infinite dimensional manifold of
diffeomorphisms such that infinitely many sinks persist simultaneously.
On the other hand, if they are perturbed along one-parameter families that
unfold generically the quadratic tangencies, then at most a finite number of
those sinks have continuation
Invariant manifolds and equilibrium states for non-uniformly hyperbolic horseshoes
In this paper we consider horseshoes containing an orbit of homoclinic
tangency accumulated by periodic points. We prove a version of the Invariant
Manifolds Theorem, construct finite Markov partitions and use them to prove the
existence and uniqueness of equilibrium states associated to H\"older
continuous potentials.Comment: 33 pages, 6 figure