194 research outputs found

    Alpha-1-antitrypsin deficiency and bronchiectasis: A concomitance or a real association?

    Get PDF
    Alpha-1-antitrypsin deficiency (AATd) is a hereditary disease, mainly characterized by early onset and the lower lobes’ predominant emphysema. Bronchiectasis is characterized by dilatation of the bronchial wall and a clinical syndrome whose features are a cough, sputum production and frequent respiratory exacerbations. In the literature, there are many papers concerning these two clinical entities, but there is still a lot of debate about a possible association between them, in particular about the frequency of their association and causal links. The aim of this short communication is to show the literature reports about the association between AATd and bronchiectasis to establish the state of the art and possible future developments in this research field

    Circulating dendritic cells are severely decreased in idiopathic pulmonary fibrosis with a potential value for prognosis prediction

    Get PDF
    Dendritic cells (DCs) accumulate in the lung of patients affected by idiopathic pulmonary fibrosis (IPF). We measured the frequencies of circulating conventional CD1c + and CD141+ cells (namely, cDC2 and cDC1) and of plasmacytoid CD303+ DCs in a cohort of 60 therapy naive IPF patients by flow cytometry. Peripheral levels of reactive oxygen species (ROS) and of pro-inflammatory and Th1/Th2 polarizing cytokines were also analyzed. All blood DC subtypes were significantly reduced in IPF patients in comparison to age- and sex-matched controls, while ROS and interleukin (IL-6) levels were augmented. IL-6 expression increased along with disease severity, according to the gender-age-physiology index, and correlated with the frequency of cDC2. IL-6 and cDC2 were not influenced by anti-fibrotic therapies but were associated with a reduced survival, the latter being an independent predictive biomarker of worse prognosis. Deciphering the role of DCs in IPF might provide information on disease pathogenesis and clinical behavior

    Liquid biopsy is a promising tool for genetic testing in idiopathic pulmonary fibrosis

    Get PDF
    Liquid biopsy, which allows the isolation of circulating cell-free (ccf) DNA from blood, is an emerging noninvasive tool widely used in oncology for diagnostic and prognosis purposes. Previous data have shown that serum cfDNA discriminates idiopathic pulmonary fibrosis (IPF) from other interstitial lung diseases. Our study aimed to measure plasma levels of ccfDNA in 59 consecutive therapy-naive and clinically stable IPF patients. The single nucleotide polymorphism (SNP) of the MUC5B gene promoter (rs35705950), associated with increased susceptibility of developing IPF, has been sought in plasma cfDNA and genomic DNA for comparison. Thirty-five age-and sex-matched healthy volunteers were recruited as the control group. Our results show that concentrations of small-size ccfDNA fragments were significantly higher in IPF patients than in controls and inversely correlated with lung function deterioration. Moreover, the median level of 104 ng/mL allowed discriminating patients with mild disease from those more advanced. The rs35705950 polymorphism was found in 11.8% of IPF patients and 8% of controls, with no differences. Complete concordance between ccfDNA and genomic DNA was detected in all control samples, while four out of seven IPF cases (57%) carrying the rs35705950 polymorphism were discordant from genomic DNA (7% of total IPF). Liquid biopsy is a suitable tool with optimistic expectations of application in the field of IPF. In analogy with cancer biology, finding some discrepancies between ccfDNA and genomic DNA in IPF patients suggests that the former may convey specific genetic information present in the primary site of the disease

    Probing photo-ionization: simulations of positive streamers in varying N2:O2 mixtures

    Get PDF
    Photo-ionization is the accepted mechanism for the propagation of positive streamers in air though the parameters are not very well known; the efficiency of this mechanism largely depends on the presence of both nitrogen and oxygen. But experiments show that streamer propagation is amazingly robust against changes of the gas composition; even for pure nitrogen with impurity levels below 1 ppm streamers propagate essentially with the same velocity as in air, but their minimal diameter is smaller, and they branch more frequently. Additionally, they move more in a zigzag fashion and sometimes exhibit a feathery structure. In our simulations, we test the relative importance of photo-ionization and of the background ionization from pulsed repetitive discharges, in air as well as in nitrogen with 1 ppm O2 . We also test reasonable parameter changes of the photo-ionization model. We find that photo- ionization dominates streamer propagation in air for repetition frequencies of at least 1 kHz, while in nitrogen with 1 ppm O2 the effect of the repetition frequency has to be included above 1 Hz. Finally, we explain the feather-like structures around streamer channels that are observed in experiments in nitrogen with high purity, but not in air.Comment: 12 figure

    Open system approach to the internal dynamics of a model multilevel molecule

    Full text link
    A model multilevel molecule described by two sets of rotational internal energy levels of different parity and degenerate ground states, coupled by a constant interaction, is considered, by assuming that the random collisions in a gas of identical molecules, provoke transitions between adjacent energy levels of the same parity. The prescriptions of the continuous time quantum random walk are applied to the single molecule, interpreted as an open quantum system, and the master equation driving its internal dynamics is built for a general distribution of the waiting times between two consecutive collisions. The coherence terms and the populations of the energy levels relax to the asymptotics with inverse power laws for relevant classes of non-Poissonian distributions of the collision times. The stable asymptotic equilibrium configuration is independent of the distribution. The long time dynamics may be hindered by increasing the tail of the distribution density. This effect may be interpreted as the appearance of the quantum Zeno effect over long time scales

    The ESA "Plasma Laboratory in Space" study

    Get PDF
    The European Space Agency has initiated, in the context of its General Studies Programme, a study of the possible use of space for studies in pure and applied plasma physics, in areas not traditionally covered by “space plasma physics”. A team of experts has been set-up to review a broad range of area including industrial plasma physics and pure plasma physics, astrophysical and solar-terrestrial areas. A set of experiments have been identified that can potentially provide access to new phenomena and to allow advances in several fields of plasma science. These experiments concern phenomena on spatial scale (102 to104 m) intermediate between what is achievable on ground experiment and usual solar system plasma observations

    Plasma kinetics issues in an ESA study for a plasma laboratory in space

    Get PDF
    A study supported by the European Space Agency (ESA), in the context of its General Studies Programme, performed an investigation of the possible use of space for studies in pure and applied plasma physics, in areas not traditionally covered by ‘space plasma physics’. A set of experiments have been identified that can potentially provide access to new phenomena and to allow advances in several fields of plasma science. These experiments concern phenomena on a spatial scale (101–104 m) intermediate between what is achievable on the ground and the usual solar system plasma observations. Detailed feasibility studies have been performed for three experiments: active magnetic experiments, largescale discharges and long tether–plasma interactions. The perspectives opened by these experiments are discussed for magnetic reconnection, instabilities, MHD turbulence, atomic excited states kinetics, weakly ionized plasmas,plasma diagnostics, artificial auroras and atmospheric studies. The discussion is also supported by results of numerical simulations and estimates
    • 

    corecore