104 research outputs found
Market analysis for cultured proteins in low- and lower-middle income countries.
The global burden of malnutrition is unacceptably high.10 Worldwide, an estimated 22% of children under the age of five were stunted and 8% were wasted in 2018.11 Low-quality diets lacking in essential vitamins, minerals, proteins, and other nutrients are a key contributor to this burden.12 Animal-source foods—such as meat, poultry, fish, eggs, and dairy—are important components of a diverse diet and provide high-quality proteins and other essential nutrients that promote optimal growth and development.13,14,15,16,17As populations and incomes grow, the global demand for animal-source foods is projected to increase substantially, particularly in many low- and lower-middle income countries (LMICs).18,19 However, cost is currently a significant barrier to animal-source food consumption. In addition, meeting this growing demand for animal-source foods will require rapid increases in livestock production, which has significant environmental impacts, requiring considerable land, water, chemical, and energy inputs.10,17,18 Global food production is responsible for roughly one-quarter of all greenhouse gas emissions, most of which (up to 80%) are related to livestock.20,21 Livestock production is also a contributor to water pollution, deforestation, land degradation, overfishing, and antimicrobial resistance.20,22,23 Given these challenges, this report aims to assess the market for potentially more sustainable alternative proteins and their potential for use in LMIC settings. The report focuses on proteins derived from fermentation-based cellular agriculture, called cultured proteins, given their potential near-term time to market and their potential impact in LMIC populations. Most cultured protein manufacturers are developing proteins that are present in animal-source milk and eggs
Stable Quantum-Correlated Many Body States through Engineered Dissipation
Engineered dissipative reservoirs have the potential to steer many-body
quantum systems toward correlated steady states useful for quantum simulation
of high-temperature superconductivity or quantum magnetism. Using up to 49
superconducting qubits, we prepared low-energy states of the transverse-field
Ising model through coupling to dissipative auxiliary qubits. In one dimension,
we observed long-range quantum correlations and a ground-state fidelity of 0.86
for 18 qubits at the critical point. In two dimensions, we found mutual
information that extends beyond nearest neighbors. Lastly, by coupling the
system to auxiliaries emulating reservoirs with different chemical potentials,
we explored transport in the quantum Heisenberg model. Our results establish
engineered dissipation as a scalable alternative to unitary evolution for
preparing entangled many-body states on noisy quantum processors
Phase transition in Random Circuit Sampling
Quantum computers hold the promise of executing tasks beyond the capability
of classical computers. Noise competes with coherent evolution and destroys
long-range correlations, making it an outstanding challenge to fully leverage
the computation power of near-term quantum processors. We report Random Circuit
Sampling (RCS) experiments where we identify distinct phases driven by the
interplay between quantum dynamics and noise. Using cross-entropy benchmarking,
we observe phase boundaries which can define the computational complexity of
noisy quantum evolution. We conclude by presenting an RCS experiment with 70
qubits at 24 cycles. We estimate the computational cost against improved
classical methods and demonstrate that our experiment is beyond the
capabilities of existing classical supercomputers
HIVToolbox, an Integrated Web Application for Investigating HIV
Many bioinformatic databases and applications focus on a limited domain of knowledge federating links to information in other databases. This segregated data structure likely limits our ability to investigate and understand complex biological systems. To facilitate research, therefore, we have built HIVToolbox, which integrates much of the knowledge about HIV proteins and allows virologists and structural biologists to access sequence, structure, and functional relationships in an intuitive web application. HIV-1 integrase protein was used as a case study to show the utility of this application. We show how data integration facilitates identification of new questions and hypotheses much more rapid and convenient than current approaches using isolated repositories. Several new hypotheses for integrase were created as an example, and we experimentally confirmed a predicted CK2 phosphorylation site. Weblink: [http://hivtoolbox.bio-toolkit.com
Recommended from our members
Track A Basic Science
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138319/1/jia218438.pd
Lawson criterion for ignition exceeded in an inertial fusion experiment
For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
Measurement-induced entanglement and teleportation on a noisy quantum processor
Measurement has a special role in quantum theory: by collapsing the
wavefunction it can enable phenomena such as teleportation and thereby alter
the "arrow of time" that constrains unitary evolution. When integrated in
many-body dynamics, measurements can lead to emergent patterns of quantum
information in space-time that go beyond established paradigms for
characterizing phases, either in or out of equilibrium. On present-day NISQ
processors, the experimental realization of this physics is challenging due to
noise, hardware limitations, and the stochastic nature of quantum measurement.
Here we address each of these experimental challenges and investigate
measurement-induced quantum information phases on up to 70 superconducting
qubits. By leveraging the interchangeability of space and time, we use a
duality mapping, to avoid mid-circuit measurement and access different
manifestations of the underlying phases -- from entanglement scaling to
measurement-induced teleportation -- in a unified way. We obtain finite-size
signatures of a phase transition with a decoding protocol that correlates the
experimental measurement record with classical simulation data. The phases
display sharply different sensitivity to noise, which we exploit to turn an
inherent hardware limitation into a useful diagnostic. Our work demonstrates an
approach to realize measurement-induced physics at scales that are at the
limits of current NISQ processors
Non-Abelian braiding of graph vertices in a superconducting processor
Indistinguishability of particles is a fundamental principle of quantum
mechanics. For all elementary and quasiparticles observed to date - including
fermions, bosons, and Abelian anyons - this principle guarantees that the
braiding of identical particles leaves the system unchanged. However, in two
spatial dimensions, an intriguing possibility exists: braiding of non-Abelian
anyons causes rotations in a space of topologically degenerate wavefunctions.
Hence, it can change the observables of the system without violating the
principle of indistinguishability. Despite the well developed mathematical
description of non-Abelian anyons and numerous theoretical proposals, the
experimental observation of their exchange statistics has remained elusive for
decades. Controllable many-body quantum states generated on quantum processors
offer another path for exploring these fundamental phenomena. While efforts on
conventional solid-state platforms typically involve Hamiltonian dynamics of
quasi-particles, superconducting quantum processors allow for directly
manipulating the many-body wavefunction via unitary gates. Building on
predictions that stabilizer codes can host projective non-Abelian Ising anyons,
we implement a generalized stabilizer code and unitary protocol to create and
braid them. This allows us to experimentally verify the fusion rules of the
anyons and braid them to realize their statistics. We then study the prospect
of employing the anyons for quantum computation and utilize braiding to create
an entangled state of anyons encoding three logical qubits. Our work provides
new insights about non-Abelian braiding and - through the future inclusion of
error correction to achieve topological protection - could open a path toward
fault-tolerant quantum computing
- …