4,293 research outputs found

    Feasibility of an onboard wake vortex avoidance system

    Get PDF
    It was determined that an onboard vortex wake detection system using existing, proven instrumentation is technically feasible. This system might be incorporated into existing onboard systems such as a wind shear detection system, and might provide the pilot with the location of a vortex wake, as well as an evasive maneuver so that the landing separations may be reduced. It is suggested that this system might be introduced into our nation's commuter aircraft fleet and major air carrier fleet and permit a reduction of current landing separation standards, thereby reducing takeoff and departure delays

    Identity of the van der Waals Force and the Casimir Effect and the Irrelevance of these Phenomena to Sonoluminescence

    Get PDF
    We show that the Casimir, or zero-point, energy of a dilute dielectric ball, or of a spherical bubble in a dielectric medium, coincides with the sum of the van der Waals energies between the molecules that make up the medium. That energy, which is finite and repulsive when self-energy and surface effects are removed, may be unambiguously calculated by either dimensional continuation or by zeta function regularization. This physical interpretation of the Casimir energy seems unambiguous evidence that the bulk self-energy cannot be relevant to sonoluminescence.Comment: 7 pages, no figures, REVTe

    Sonoluminescence as a QED vacuum effect: Probing Schwinger's proposal

    Full text link
    Several years ago Schwinger proposed a physical mechanism for sonoluminescence in terms of photon production due to changes in the properties of the quantum-electrodynamic (QED) vacuum arising from a collapsing dielectric bubble. This mechanism can be re-phrased in terms of the Casimir effect and has recently been the subject of considerable controversy. The present paper probes Schwinger's suggestion in detail: Using the sudden approximation we calculate Bogolubov coefficients relating the QED vacuum in the presence of the expanded bubble to that in the presence of the collapsed bubble. In this way we derive an estimate for the spectrum and total energy emitted. We verify that in the sudden approximation there is an efficient production of photons, and further that the main contribution to this dynamic Casimir effect comes from a volume term, as per Schwinger's original calculation. However, we also demonstrate that the timescales required to implement Schwinger's original suggestion are not physically relevant to sonoluminescence. Although Schwinger was correct in his assertion that changes in the zero-point energy lead to photon production, nevertheless his original model is not appropriate for sonoluminescence. In other works (see quant-ph/9805023, quant-ph/9904013, quant-ph/9904018, quant-ph/9905034) we have developed a variant of Schwinger's model that is compatible with the physically required timescales.Comment: 18 pages, ReV_TeX 3.2, 9 figures. Major revisions: This document is now limited to providing a probe of Schwinger's original suggestion for sonoluminescence. For details on our own variant of Schwinger's ideas see quant-ph/9805023, quant-ph/9904013, quant-ph/9904018, quant-ph/990503

    Casimir bag energy in the stochastic approximation to the pure QCD vacuum

    Get PDF
    We study the Casimir contribution to the bag energy coming from gluon field fluctuations, within the context of the stochastic vacuum model (SVM) of pure QCD. After formulating the problem in terms of the generating functional of field strength cumulants, we argue that the resulting predictions about the Casimir energy are compatible with the phenomenologically required bag energy term.Comment: 16 page

    How do ecological perspectives help understand schools as sites for teacher learning?

    Get PDF
    Schools are sites of teachers’ professional learning for both new entrants and experienced practitioners. In this paper, schools are conceptualised as complex, multidimensional ecologies that are constituted by the relations that exist between school leaders, teachers, mentors and all members of the school community. As relational environments, the conditions affecting professional learning – both formal and informal – are constantly dynamic, with multiple and simultaneous interactions taking place between these stakeholders. Interactions are also multi-layered – between the school system, individuals, classrooms, the community and the policy environment. School leaders are a major influence on these dynamics and affect how schools act as sites of professional formation, mediating external policy as well as affecting micro-dynamics within individual school systems. The challenge of realising professional learning within these relational contexts can be viewed as a ‘wicked problem’, a feature of complex systems that resists simplified solutions. In conceptualising a complex ecology at work, we illuminate the relational dynamics with a focus, for all stakeholders within schools, including leaders, on the need to recognise and value the importance of ‘emergence’ in professional learning. This means embracing inevitable uncertainty as a feature of schools as complex systems

    Optical BCS conductivity at imaginary frequencies and dispersion energies of superconductors

    Full text link
    We present an efficient expression for the analytic continuation to arbitrary complex frequencies of the complex optical and AC conductivity of a homogeneous superconductor with arbitrary mean free path. Knowledge of this quantity is fundamental in the calculation of thermodynamic potentials and dispersion energies involving type-I superconducting bodies. When considered for imaginary frequencies, our formula evaluates faster than previous schemes involving Kramers--Kronig transforms. A number of applications illustrates its efficiency: a simplified low-frequency expansion of the conductivity, the electromagnetic bulk self-energy due to longitudinal plasma oscillations, and the Casimir free energy of a superconducting cavity.Comment: 20 pages, 7 figures, calculation of Casimir energy adde

    Casimir Energy of a Spherical Shell

    Get PDF
    The Casimir energy for a conducting spherical shell of radius aa is computed using a direct mode summation approach. An essential ingredient is the implementation of a recently proposed method based on Cauchy's theorem for an evaluation of the eigenfrequencies of the system. It is shown, however, that this earlier calculation uses an improper set of modes to describe the waves exterior to the sphere. Upon making the necessary corrections and taking care to ensure that no mathematically ill-defined expressions occur, the technique is shown to leave numerical results unaltered while avoiding a longstanding criticism raised against earlier calculations of the Casimir energy.Comment: LaTeX, 14 pages, 1 figur

    Observability of the Bulk Casimir Effect: Can the Dynamical Casimir Effect be Relevant to Sonoluminescence?

    Get PDF
    The experimental observation of intense light emission by acoustically driven, periodically collapsing bubbles of air in water (sonoluminescence) has yet to receive an adequate explanation. One of the most intriguing ideas is that the conversion of acoustic energy into photons occurs quantum mechanically, through a dynamical version of the Casimir effect. We have argued elsewhere that in the adiabatic approximation, which should be reliable here, Casimir or zero-point energies cannot possibly be large enough to be relevant. (About 10 MeV of energy is released per collapse.) However, there are sufficient subtleties involved that others have come to opposite conclusions. In particular, it has been suggested that bulk energy, that is, simply the naive sum of 12ω{1\over2}\hbar\omega, which is proportional to the volume, could be relevant. We show that this cannot be the case, based on general principles as well as specific calculations. In the process we further illuminate some of the divergence difficulties that plague Casimir calculations, with an example relevant to the bag model of hadrons.Comment: 13 pages, REVTe

    Effects of phase transitions in devices actuated by the electromagnetic vacuum force

    Full text link
    We study the influence of the electromagnetic vacuum force on the behaviour of a model device based on materials, like germanium tellurides, that undergo fast and reversible metal-insulator transitions on passing from the crystalline to the amorphous phase. The calculations are performed at finite temperature and fully accounting for the behaviour of the material dielectric functions. The results show that the transition can be exploited to extend the distance and energy ranges under which the device can be operated without undergoing stiction phenomena. We discuss the approximation involved in adopting the Casimir expression in simulating nano- and micro- devices at finite temperature

    Calculation of the Casimir Force between Similar and Dissimilar Metal Plates at Finite Temperature

    Full text link
    The Casimir pressure is calculated between parallel metal plates, containing the materials Au, Cu, or Al. Our motivation for making this calculation is the need of comparing theoretical predictions, based on the Lifshitz formula, with experiments that are becoming gradually more accurate. In particular, the finite temperature correction is considered, in view of the recent discussion in the literature on this point. A special attention is given to the case where the difference between the Casimir pressures at two different temperatures, T=300 K and T=350 K, is involved. This seems to be a case that will be experimentally attainable in the near future, and it will be a critical test of the temperature correction.Comment: 23 latex pages, 12 figures. Introductory section expanded, 4 new references. To appear in J. Phys. A: Math. Ge
    corecore