195,040 research outputs found

    Lepton Family Symmetry and Neutrino Mass Matrix

    Full text link
    The standard model of leptons is extended to accommodate a discrete Z_3 X Z_2 family symmetry. After rotating the charged-lepton mass matrix to its diagonal form, the neutrino mass matrix reveals itself as very suitable for explaining atmospheric and solar neutrino oscillation data. A generic requirement of this approach is the appearance of three Higgs doublets at the electroweak scale, with observable flavor violating decays.Comment: 9 pages, including 1 figur

    Neutrino Mass from Triplet and Doublet Scalars at the TeV Scale

    Get PDF
    If the minimal standard model of particle interactions is extended to include a scalar triplet with lepton number L=2L=-2 and a scalar doublet with L=1L=-1, neutrino masses mνμ124v2/M5102m_\nu \sim \mu_{12}^4 v^2/M^5 \sim 10^{-2} eV is possible, where v102v \sim 10^2 GeV is the electroweak symmetry breaking scale, M1M \sim 1 TeV is the typical mass of the new scalars, and μ121\mu_{12} \sim 1 GeV is a soft lepton-number-violating parameter.Comment: 6 pages, no figur

    Laser-to-proton energy transfer efficiency in laser-plasma interactions

    Full text link
    It is shown that the energy of protons accelerated in laser-matter interaction experiments may be significantly increased through the process of splitting the incoming laser pulse into multiple interaction stages of equal intensity. From a thermodynamic point of view, the splitting procedure can be viewed as an effective way of increasing the efficiency of energy transfer from the laser light to protons, which peaks for processes having the least amount of entropy gain. It is predicted that it should be possible to achieve \apprge 100% increase in the energy efficiency in a six-stage laser proton accelerator compared to a single laser-target interaction scheme

    Baryon and Lepton Number Violation with Scalar Bilinears

    Get PDF
    We consider all possible scalar bilinears, which couple to two fermions of the standard model. The various baryon and lepton number violating couplings allowed by these exotic scalars are studied. We then discuss which ones are constrained by limits on proton decay (to a lepton and a meson as well as to three leptons), neutron-antineutron oscillations, and neutrinoless double beta decay.Comment: 11 pages latex fil

    Neutrino Exotica in the Skew E_6 Left-Right Model

    Get PDF
    With the particle content of the 27 representation of E_6, a skew left-right supersymmetric gauge model was proposed many years ago, with a variety of interesting phenomenological implications. The neutrino sector of this model offers a natural framework for obtaining small Majorana masses for nu_e, nu_mu, and nu_tau, with the added bonus of accommodating 2 light sterile neutrinos.Comment: 12 pages, no figure, conclusion clarifie

    Shifting RbR_b with AFBbA^b_{FB}

    Get PDF
    Precision measurements at the ZZ resonance agree well with the standard model. However, there is still a hint of a discrepancy, not so much in RbR_b by itself (which has received a great deal of attention in the past several years) but in the forward-backward asymmetry AFBbA^b_{FB} together with RbR_b. The two are of course correlated. We explore the possibilty that these and other effects are due to the mixing of bLb_L and bRb_R with one or more heavy quarks.Comment: 11 pages, 1 Figure, LaTex fil

    Numerical framework for transcritical real-fluid reacting flow simulations using the flamelet progress variable approach

    Full text link
    An extension to the classical FPV model is developed for transcritical real-fluid combustion simulations in the context of finite volume, fully compressible, explicit solvers. A double-flux model is developed for transcritical flows to eliminate the spurious pressure oscillations. A hybrid scheme with entropy-stable flux correction is formulated to robustly represent large density ratios. The thermodynamics for ideal-gas values is modeled by a linearized specific heat ratio model. Parameters needed for the cubic EoS are pre-tabulated for the evaluation of departure functions and a quadratic expression is used to recover the attraction parameter. The novelty of the proposed approach lies in the ability to account for pressure and temperature variations from the baseline table. Cryogenic LOX/GH2 mixing and reacting cases are performed to demonstrate the capability of the proposed approach in multidimensional simulations. The proposed combustion model and numerical schemes are directly applicable for LES simulations of real applications under transcritical conditions.Comment: 55th AIAA Aerospace Sciences Meeting, Dallas, T

    Transverse-Momentum Dependent Factorization for gamma^* pi^0 to gamma

    Full text link
    With a consistent definition of transverse-momentum dependent (TMD) light-cone wave function, we show that the amplitude for the process γπ0γ\gamma^* \pi^0 \to\gamma can be factorized when the virtuality of the initial photon is large. In contrast to the collinear factorization in which the amplitude is factorized as a convolution of the standard light-cone wave function and a hard part, the TMD factorization yields a convolution of a TMD light-cone wave function, a soft factor and a hard part. We explicitly show that the TMD factorization holds at one loop level. It is expected that the factorization holds beyond one-loop level because the cancelation of soft divergences is on a diagram-by-diagram basis. We also show that the TMD factorization helps to resum large logarithms of type ln2x\ln^2x.Comment: Published version in Phys.Rev.D75:014014,200

    Hawking Radiation of Black p-Branes from Gravitational Anomaly

    Full text link
    We investigate the Hawking radiation of black pp-branes of superstring theories using the method of anomaly cancelation, specially, we use the method of [S. Iso, H. Umetsu and F. Wilczek, {\sl Phys. Rev. Lett.} {\bf 96}, 151302 (2006); {\sl Phys. Rev. D} {\bf 74}, 044017 (2006)]. The metrics of black pp-branes are spherically symmetric, but not the Schwarzschild type. In order to simplify the calculation, we first make a coordinate transformation to transform the metric to the Schwarzschild type. Then we calculate its energy-momentum flux from the method of anomaly cancelation of the above mentioned references. The obtained energy-momentum flux is equal to a black body radiation, the thermodynamic temperature of the radiation is equal to its Hawking temperature. And we find that the results are not changed for the original non-Schwarzschild type spherically symmetric metric.Comment: 19 pages Latex, some mistakes correcte
    corecore