64 research outputs found

    Perivascular Adipose Tissue and Its Role in Type 2 Diabetes and Cardiovascular Disease

    Get PDF
    Obesity is associated with insulin resistance, hypertension, and cardiovascular disease, but the mechanisms underlying these associations are incompletely understood. Microvascular dysfunction may play an important role in the pathogenesis of both insulin resistance and hypertension in obesity. Adipose tissue-derived substances (adipokines) and especially inflammatory products of adipose tissue control insulin sensitivity and vascular function. In the past years, adipose tissue associated with the vasculature, or perivascular adipose tissue (PAT), has been shown to produce a variety of adipokines that contribute to regulation of vascular tone and local inflammation. This review describes our current understanding of the mechanisms linking perivascular adipose tissue to vascular function, inflammation, and insulin resistance. Furthermore, we will discuss mechanisms controlling the quantity and adipokines secretion by PAT

    Perivascular Fat and the Microcirculation: Relevance to Insulin Resistance, Diabetes, and Cardiovascular Disease

    Get PDF
    Type 2 diabetes and its major risk factor, obesity, are a growing burden for public health. The mechanisms that connect obesity and its related disorders, such as insulin resistance, type 2 diabetes, and hypertension, are still undefined. Microvascular dysfunction may be a pathophysiologic link between insulin resistance and hypertension in obesity. Many studies have shown that adipose tissue-derived substances (adipokines) interact with (micro)vascular function and influence insulin sensitivity. In the past, research focused on adipokines from perivascular adipose tissue (PVAT). In this review, we focus on the interactions between adipokines, predominantly from PVAT, and microvascular function in relation to the development of insulin resistance, diabetes, and cardiovascular disease

    IMPROVE-PD Finder: A Web-Based Platform to Search and Share Peritoneal Dialysis Biobank, Registry, and Clinical Trial Metadata

    Get PDF
    Peritoneal dialysis (PD) is a life-sustaining kidney replacement therapy for the increasing number of people with permanent kidney failure across all age groups worldwide. Although PD potentially offers socioeconomic and performance benefits over hemodialysis, both treatments severely accelerate complications of chronic kidney disease, in particular atherosclerotic disease progression that worsens outcomes when compared with non-dialysis patients.1 Improved understanding of the underlying molecular pathogenic mechanisms should help in the design of interventions that improve outcomes.2 Current state of the art in PD research, however, faces major limitations. Although there are numerous in vitro and ex vivo studies on complex cellular and molecular networks active in PD3, 4, 5 and in vivo animal models of PD6, 7, 8 that provide in-depth pathomechanistic insights and allow identification of promising therapeutic targets,9,S1,S2 translation into clinical studies is a major challenge.S3 Patient studies that aim to substantiate experimental findings with definitive clinical outcome data are mostly small. As a result, they have not provided sufficient power to derive meaningful or clinically implementable conclusions.2 Basic PD technique has hardly changed over decades, despite high PD-related complication rates. Randomized prospective trials with hard clinical end points studied with adequate power are difficult to realize in a multifactorial setting with low patient numbers (360,000 worldwide) and are associated with high costs. To overcome these barriers intermediate end points such as PD effluent biomarkers associated (but not necessarily causally related) with hard clinical end points and composite end points are often studied.S4,S5 Equally, combining analyses of existing cohort studies and trial data through collaborative sharing might be of considerable benefit

    Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity

    Get PDF

    Adipose Tissue Immune Response: Novel Triggers and Consequences for Chronic Inflammatory Conditions

    Get PDF

    Exercise effects on perivascular adipose tissue: endocrine and paracrine determinants of vascular function

    No full text
    Obesity is a global epidemic, accompanied by increased risk of type 2 diabetes and cardiovascular disease. Adipose tissue hypertrophy is associated with adipose tissue inflammation, which alters the secretion of adipose tissue-derived bioactive products, known as adipokines. Adipokines determine vessel wall properties such as smooth muscle tone and vessel wall inflammation. Exercise is a mainstay of prevention of chronic, non-communicable diseases, type 2 diabetes and cardiovascular disease in particular. Aside from reducing adipose tissue mass, exercise has been shown to reduce inflammatory activity in this tissue. Mechanistically, contracting muscles release bioactive molecules known as myokines, which alter the metabolic phenotype of adipose tissue. In adipose tissue, myokines induce browning, enhance fatty acid oxidation and improve insulin sensitivity. In the past years, the perivascular adipose tissue (PVAT) which surrounds the vasculature, has been shown to control vascular tone and inflammation through local release of adipokines. In obesity, an increase in mass and inflammation of PVAT culminate in dysregulation of adipokine secretion, which contributes to vascular dysfunction. This review describes our current understanding of the mechanisms by which active muscles interact with adipose tissue and improve vascular function. Aside from the exercise-dependent regulation of canonical adipose tissue function, we will focus on the interactions between skeletal muscle and PVAT and the role of novel myokines, such as IL-15, FGF21 and irisin, in these interactions. Linked Articles: This article is part of a themed section on Molecular Mechanisms Regulating Perivascular Adipose Tissue – Potential Pharmacological Targets? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.20/issuetoc

    Do grape polyphenols improve metabolic syndrome components? A systematic review

    No full text
    Background/Objectives:Epidemiological, in vitro and animal studies suggest that grape polyphenols, such as those present in wine, have favorable effects on the metabolic syndrome. However, controversy remains whether treatment with grape polyphenols is effective in humans. Here, we aimed to systemically review the effects of grape polyphenols on metabolic syndrome components in humans.Subjects/Methods:We systematically searched Medline, EMBASE and the Cochrane database for all clinical trials assessing the effects of grape polyphenols on insulin sensitivity, glycemia, blood pressure or lipid levels. We screened all titles and reviewed abstracts of potentially relevant studies. Full papers were assessed for eligibility and quality-rated according to the Jadad scale by two independent assessors.Results:Thirty-nine studies met the eligibility criteria. In individuals without component criteria of the metabolic syndrome, only low- and medium-quality studies were found with primarily neutral results. In individuals with the metabolic syndrome or related conditions, one of two high-quality studies suggested improvement in insulin sensitivity. Glycemia was improved in 2 of 11 lower-quality studies and 2 of 4 high-quality studies. Seven of 22 studies demonstrated a significant decrease in blood pressure, but only one was of high quality. Two of four high-quality studies pointed towards effects on total cholesterol while other lipidemic parameters were not affected.Conclusions:No compelling data exist that grape polyphenols can positively influence glycemia, blood pressure or lipid levels in individuals with or without the metabolic syndrome. Limited evidence suggests that grape polyphenols may improve insulin sensitivity.European Journal of Clinical Nutrition advance online publication, 1 February 2017; doi:10.1038/ejcn.2016.227
    • …
    corecore