314 research outputs found
Phase transitions and phase diagram of the ferroelectric perovskite NBT-BT by anelastic and dielectric measurements
The complex elastic compliance and dielectric susceptibility of
(Na_{0.5}Bi_{0.5})_{1-x}Ba_{x}TiO_{3} (NBT-BT) have been measured in the
composition range between pure NBT and the morphotropic phase boundary
included, 0 <= x <= 0.08. The compliance of NBT presents sharp peaks at the
rhombohedral/tetragonal and tetragonal/cubic transitions, allowing the
determination of the tetragonal region of the phase diagram, up to now
impossible due to the strong lattice disorder and small distortions and
polarizations involved. In spite of ample evidence of disorder and structural
heterogeneity, the R-T transition remains sharp up to x = 0.06, whereas the T-C
transition merges into the diffuse and relaxor-like transition associated with
broad maxima of the dielectric and elastic susceptibilities. An attempt is made
at relating the different features in the anelastic and dielectric curves to
different modes of octahedral rotations and polar cation shifts. The
possibility is also considered that the cation displacements locally have
monoclinic symmetry, as for PZT near the morphotropic phase boundary.Comment: 11 pages, 9 figures, submitted to Phys. Rev.
Low-temperature phase transformations of PZT in the morphotropic phase-boundary region
We present anelastic and dielectric spectroscopy measurements of
PbZr(1-x)Ti(x)O(3) with 0.455 < x < 0.53, which provide new information on the
low temperature phase transitions. The tetragonal-to-monoclinic transformation
is first-order for x < 0.48 and causes a softening of the polycrystal Young's
modulus whose amplitude may exceed the one at the cubic-to-tetragonal
transformation; this is explainable in terms of linear coupling between shear
strain components and tilting angle of polarization in the monoclinic phase.
The transition involving rotations of the octahedra below 200 K is visible both
in the dielectric and anelastic losses, and it extends within the tetragonal
phase, as predicted by recent first-principle calculations.Comment: 4 pages, 4 figure
Strong Correlations in Electron Doped Phthalocyanine Conductors Near Half Filling
We propose that electron doped nontransition metal-phthalocyanines (MPc) like
ZnPc and MgPc, similar to those very recently reported, should constitute novel
strongly correlated metals. Due to orbital degeneracy, Jahn-Teller coupling and
Hund's rule exchange, and with a large on-site Coulomb repulsion, these
molecular conductors should display, particularly near half filling at two
electrons/molecule, very unconventional properties, including Mott insulators,
strongly correlated superconductivity, and other intriguing phases.Comment: 4 pages, 1 figure, submited to PR
Deposition temperature influence on the wear behaviour of carbon-based coatings deposited on hardened steel
An evaluation regarding the influence of substrate material characteristics and deposition parameters on the tribological behaviour of carbon-based is presented. Chromium nitride interlayers and carbon-based thin films were deposited on hardened AISI 5115 case hardening steel, by magnetron sputtering. The physical vapour deposition (PVD) deposition was performed at three different temperatures: 180 °C, 200 °C and 250 °C. The chemical composition of the samples was assessed by Rutherford Backscattering Spectroscopy (RBS), the structure by X-ray Diffraction (XRD), and the surface morphology by Atomic Force Microscopy (AFM). The surface chemistry was analysed by X-ray Photoelectron Spectroscopy (XPS) and Raman Spectroscopy. The coatings are homogeneous, amorphous, with a smooth surface. The mechanical behaviour has been assessed on a pin-on disk rotational tribometer (wear characteristics), on a micro scratch tester (adhesion to the substrate), by ball-cratering (film thickness); by nanoindentation (hardness and the modulus of elasticity). A strong correlation between the substrate characteristics, but more importantly, of the deposition temperature, on one hand, and the mechanical characteristics, on the other hand, has been observed. The fracture toughness is positively influenced by the presence of the ceramic interlayer (chromium nitride). The modulus of elasticity and friction coefficient (both in dry conditions and lubricated) are decreased for higher deposition temperatures, however the higher deposition temperature negatively affects the hardness of the steel substrate.We hereby acknowledge the structural funds project PRO-DD (POSCCE, O.2.2.1., ID 123, SMIS 2637, ctr. no 11/2009) for providing some of the infrastructure used in this work
Octahedral tilting, monoclinic phase and the phase diagram of PZT
Anelastic and dielectric spectroscopy measurements on PZT close to the
morphotropic (MPB) and antiferroelectric boundaries provide new insight in some
controversial aspects of its phase diagram. No evidence is found of a border
separating monoclinic (M) from rhombohedral (R) phases, in agreement with
recent structural studies supporting a coexistence of the two phases over a
broad composition range x < 0.5, with the fraction of M increasing toward the
MPB. It is also discussed why the observed maximum of elastic compliance
appears to be due to a rotational instability of the polarisation and therefore
cannot be explained by extrinsic softening from finely twinned R phase alone,
but indicates the presence also of M phase, not necessarily homogeneous.
A new diffuse transition is found within the ferroelectric phase near x ~
0.1, at a temperature T_IT higher than the well established boundary T_T to the
phase with tilted octahedra. It is proposed that around T_IT the octahedra
start rotating in a disordered manner and finally become ordered below T_T. In
this interpretation, the onset temperature for octahedral tilting monotonically
increases up to the antiferroelectric transition of PbZrO3, and the depression
of T_T(x) below x = 0.18 would be a consequence of the partial relieve of the
mismatch between the cation radii with the initial stage of tilting below T_IT.Comment: submitted to J. Phys.: Condens. Matte
Memristive Effects in Oxygenated Amorphous Carbon Nanodevices
This is the author accepted manuscript. The final version is available from IOP Publishing via the DOI in this record.Computing with resistive-switching (memristive) memory devices has shown much recent progress and offers an attractive route to circumvent the von-Neumann bottleneck, i.e. the separation of processing and memory, which limits the performance of conventional computer architectures. Due to their good scalability and nanosecond switching speeds, carbon-based resistive-switching memory devices could play an important role in this respect. However, devices based on elemental carbon, such as tetrahedral amorphous carbon or t-aC, typically suffer from a low cycling endurance. A material that has proven to be capable of combining the advantages of elemental carbon-based memories with simple fabrication methods and good endurance performance for binary memory applications is oxygenated amorphous carbon, or a-COx. Here, we examine the memristive capabilities of nanoscale a-COx devices, in particular their ability to provide the multilevel and accumulation properties that underpin computing type applications. We show the successful operation of nanoscale a-COx memory cells for both the storage of multilevel states (here 3-level) and for the provision of an arithmetic accumulator. We implement a base-16, or hexadecimal, accumulator and show how such a device can carry out hexadecimal arithmetic and simultaneously store the computed result in the self-same a-COx cell, all using fast (sub-10 ns) and low-energy (sub-pJ) input pulses.This work was funded by the EU Research & Innovation project CareRAMM, grant no. 30998
Temperature Evolution in Nanoscale Carbon-Based Memory Devices Due to Local Joule Heating
© 2002-2012 IEEE. Tetrahedral amorphous (ta-C) carbon-based memory devices have recently gained traction due to their good scalability and promising properties like nanosecond switching speeds. However, cycling endurance is still a key challenge. In this paper, we present a model that takes local fluctuations in sp 2 and sp 3 content into account when describing the conductivity of ta-C memory devices. We present a detailed study of the conductivity of ta-C memory devices ranging from ohmic behavior at low electric fields to dielectric breakdown. The study consists of pulsed switching experiments and device-scale simulations, which allows us for the first time to provide insights into the local temperature distribution at the onset of memory switching
Continuous-distribution puddle model for conduction in trilayer graphene
An insulator-to-metal transition is observed in trilayer graphene based on
the temperature dependence of the resistance under different applied gate
voltages. At small gate voltages the resistance decreases with increasing
temperature due to the increase in carrier concentration resulting from thermal
excitation of electron-hole pairs. At large gate voltages excitation of
electron-hole pairs is suppressed, and the resistance increases with increasing
temperature because of the enhanced electron-phonon scattering. We find that
the simple model with overlapping conduction and valence bands, each with
quadratic dispersion relations, is unsatisfactory. Instead, we conclude that
impurities in the substrate that create local puddles of higher electron or
hole densities are responsible for the residual conductivity at low
temperatures. The best fit is obtained using a continuous distribution of
puddles. From the fit the average of the electron and hole effective masses can
be determined.Comment: 18 pages, 5 figure
Recommended from our members
Carbon-Based Resistive Memories
Carbon-based nonvolatile resistive memories are an emerging technology. Switching endurance remains a challenge in carbon memories based on tetrahedral amorphous carbon (ta-C). One way to counter this is by oxygenation to increase the repeatability of reversible switching. Here, we overview the current status of carbon memories. We then present a comparative study of oxygen-free and oxygenated carbon-based memory devices, combining experiments and molecular dynamics (MD) simulations
- …