190 research outputs found

    Rare-earth impurities in Co2_2MnSi: an opportunity to improve Half-Metallicity at finite temperatures

    Full text link
    We analyse the effects of doping Holmium impurities into the full-Heusler ferromagnetic alloy Co2_2MnSi. Experimental results, as well as theoretical calculations within Density Functional Theory in the "Local Density Approximation plus Hubbard U" framework show that the holmium moment is aligned antiparallely to that of the transition metal atoms. According to the electronic structure calculations, substituting Ho on Co sites introduces a finite density of states in the minority spin gap, while substitution on the Mn sites preserves the half-metallic character.Comment: 22 pages, 8 figures. published in PR

    Non-quasiparticle states in Co2_2MnSi evidenced through magnetic tunnel junction spectroscopy measurements

    Get PDF
    We investigate the effects of electronic correlations in the full-Heusler Co2_2MnSi, by combining a theoretical analysis of the spin-resolved density of states with tunneling-conductance spectroscopy measurements using Co2_2MnSi as electrode. Both experimental and theoretical results confirm the existence of so-called non-quasiparticle states and their crucial contribution to the finite-temperature spin polarisation in this material.Comment: Repalced Fig. 1. of PRL, 100, 086402 (2008), better k-space resolution for DOS around Fermi energ

    Observation of a Griffiths-like phase in the paramagnetic regime of ErCo_2

    Full text link
    A systematic x-ray magnetic circular dichroism study of the paramagnetic phase of ErCo2 has recently allowed to identify the inversion of the net magnetization of the Co net moment with respect to the applied field well above the ferrimagnetic ordering temperature, Tc. The study of small angle neutron scattering measurements has also shown the presence of short range order correlations in the same temperature region. This phenomenon, which we have denoted parimagnetism, may be related with the onset of a Griffiths-like phase in paramagnetic ErCo2. We have measured ac susceptibility on ErCo2 as a function of temperature, applied field, and excitation frequency. Several characteristics shared by systems showing a Griffiths phase are present in ErCo2, namely the formation of ferromagnetic clusters in the disordered phase, the loss of analyticity of the magnetic susceptibility and its extreme sensitivity to an applied magnetic field. The paramagnetic susceptibility allows to establish that the magnetic clusters are only formed by Co moments as well as the intrinsic nature of those Co moments

    Al-Substitution Effects on Physical Properties of the Colossal Magnetoresistance Compouns La0.67ca0.33mno3

    Full text link
    We present a detailed study of the polycrystalline perovskite manganites La0.67Ca0.33AlxMn1-xO3 (x = 0, 0.1, 0.15, 0.5) at low temperatures and high magnetic fields, including electrical resistance, magnetization, ac susceptibility. The static magnetic susceptibility was also measured up to 1000 K. All the samples show colossal magnetoresistance behavior and the Curie temperatures decrease with Al doping. The data suggest the presence of correlated magnetic clusters near by the ferromagnetic transition. This appears to be a consequence of the structural and magnetic disorder created by the random distribution of Al atoms.Comment: 13 pages including 5 figure

    Magnetism and electronic structure calculation of SmN

    Full text link
    The results of the electronic structure calculations performed on SmN by using the LDA+U method with and without including the spin-orbit coupling are presented. Within the LDA+U approach, a N(2pp) band polarization of 0.3 μB\simeq 0.3\ \mu_B is induced by Sm(4ff)-N(2pp) hybridization, and a half-metallic ground state is obtained. By including spin-orbit coupling the magnetic structure was shown to be antiferromagnetic of type II, with Sm spin and orbital moments nearly cancelling. This results into a semiconducting ground state, which is in agreement with experimental results.Comment: Submitted to JPCM, 12 pages, 4 figure

    A Coupled Thermoreflectance Thermography Experimental System and Ultra-Fast Adaptive Computational Engine for the Complete Thermal Characterization of Three-Dimensional Electronic Devices : Validation

    Get PDF
    This work builds on the previous introduction [1] of a coupled experimental-computational system devised to fully characterize the thermal behavior of complex 3D submicron electronic devices. The new system replaces the laser-based surface temperature scanning approach with a CCD camera-based approach. As before, the thermo-reflectance thermography system is used to non-invasively measure with submicron resolution the 2D surface temperature field of an activated device. The measured temperature field is then used as input for an ultra-fast inverse computational solution to fully characterize the thermal behavior of the complex three-dimensional device. For the purposes of this investigation, basic micro-heater devices were built, activated, and measured. In order to quantitatively validate the coupled experimental-computational system, the system was used to extract geometric features of a known device, thus assessing the system's ability to combine measured experimental results and computations to fully characterize complex 3D electronic devices
    corecore