129 research outputs found

    Electronic structure and Magnetism in BaMn2_2As2_2 and BaMn2_2Sb2_2

    Full text link
    We study the properties of ThCr2_2Si2_2 structure BaMn2_2As2_2 and BaMn2_2Sb2_2 using density functional calculations of the electronic and magnetic as well experimental measurements on single crystal samples of BaMn2_2As2_2. These materials are local moment magnets with moderate band gap antiferromagnetic semiconducting ground states. The electronic structures show substantial Mn - pnictogen hybridization, which stabilizes an intermediate spin configuration for the nominally d5d^5 Mn. The results are discussed in the context of possible thermoelectric applications and the relationship with the corresponding iron / cobalt / nickel compounds Ba(Fe,Co,Ni)2_2As2_2

    Geotechnical characterization of the North Ramp of the Exploratory Studies Facility: Yucca Mountain Site Characterization Project. Volume 1, Data summary

    Get PDF
    This report presents the results of geological and geotechnical characterization of the Miocene volcanic tuff rocks of the Timber Mountain and Paintbrush groups that the tunnel boring machine will encounter during excavation of the Exploratory Studies Facility (ESF) North Ramp. The is being constructed by the DOE as part of the Yucca Mountain Project site characterization activities. The purpose of these activities is to evaluate the feasibility of locating a potential high-level nuclear waste repository on lands adjacent to the Nevada Test Site, Nye County, Nevada. This report was prepared as part of the Soil and Rock Properties Studies in accordance with the 8.3.1.14.2 Study Plan. This report is volume 1 of the data summary

    Magnetic, Transport, and Thermal Properties of Single Crystals of the Layered Arsenide BaMn2As2

    Full text link
    Growth of BaMn2As2 crystals using both MnAs and Sn fluxes is reported. Room temperature crystallography, anisotropic isothermal magnetization M versus field H and magnetic susceptibility chi versus temperature T, electrical resistivity in the ab plane rho(T), and heat capacity C(T) measurements on the crystals were carried out. The tetragonal ThCr2Si2-type structure of BaMn2As2 is confirmed. After correction for traces of ferromagnetic MnAs impurity phase using M(H) isotherms, the inferred intrinsic chi(T) data of the crystals are anisotropic with chi_{ab}/chi_{c} \approx 7.5 at T = 2 K. The temperature dependences of the anisotropic chi data suggest that BaMn2As2 is a collinear antiferromagnet at room temperature with the easy axis along the c axis, and with an extrapolated Neel temperature T_N \sim 500 K. The rho(T) decreases with decreasing T below 310 K but then increases below \sim 50 K, suggesting that BaMn2As2 is a small band-gap semiconductor with an activation energy of order 0.03 eV. The C(T) data from 2 to 5 K are consistent with this insulating ground state, exhibiting a low temperature Sommerfeld coefficient gamma = 0.0(4) mJ/mol K^2. The Debye temperature is determined from these data to be theta_D = 246(4) K. BaMn2As2 is a potential parent compound for ThCr2Si2-type superconductors.Comment: 7 pages, 6 figures; v2: typos corrected, additional data and discussion, accepted for publication in Phys. Rev.

    Synthesis, Structure and Properties of Tetragonal Sr2M3As2O2 (M3 = Mn3, Mn2Cu and MnZn2) Compounds Containing Alternating CuO2-Type and FeAs-Type Layers

    Full text link
    Polycrystalline samples of Sr2Mn2CuAs2O2, Sr2Mn3As2O2, and Sr2Zn2MnAs2O2 were synthesized. Their temperature- and applied magnetic field-dependent structural, transport, thermal, and magnetic properties were characterized by means of x-ray and neutron diffraction, electrical resistivity rho, heat capacity, magnetization and magnetic susceptibility measurements. These compounds have a body-centered-tetragonal crystal structure (space group I4/mmm) that consists of MO2 (M = Zn and/or Mn) oxide layers similar to the CuO2 layers in high superconducting transition temperature Tc cuprate superconductors, and intermetallic MAs (M = Cu and/or Mn) layers similar to the FeAs layers in high-Tc pnictides. These two types of layers alternate along the crystallographic c-axis and are separated by Sr atoms. The site occupancies of Mn, Cu and Zn were studied using Rietveld refinements of x-ray and neutron powder diffraction data. The temperature dependences of rho suggest metallic character for Sr2Mn2CuAs2O2 and semiconducting character for Sr2Mn3As2O2 and Sr2Zn2MnAs2O2. Sr2Mn2CuAs2O2 is inferred to be a ferrimagnet with a Curie temperature TC = 95(1) K. Remarkably, we find that the magnetic ground state structure changes from a G-type antiferromagnetic structure in Sr2Mn3As2O2 to an A-type ferrimagnetic structure in Sr2Mn2CuAs2O2 in which the Mn ions in each layer are ferromagnetically aligned, but are antiferromagnetically aligned between layers.Comment: 18 pages, 16 figures, 6 tables; submitted to Phys. Rev.

    Two dimensional Dirac fermions and quantum magnetoresistance in CaMnBi2_2

    Full text link
    We report two dimensional Dirac fermions and quantum magnetoresistance in single crystals of CaMnBi2_2. The non-zero Berry's phase, small cyclotron resonant mass and first-principle band structure suggest the existence of the Dirac fermions in the Bi square nets. The in-plane transverse magnetoresistance exhibits a crossover at a critical field BB^* from semiclassical weak-field B2B^2 dependence to the high-field unsaturated linear magnetoresistance (120\sim 120% in 9 T at 2 K) due to the quantum limit of the Dirac fermions. The temperature dependence of BB^* satisfies quadratic behavior, which is attributed to the splitting of linear energy dispersion in high field. Our results demonstrate the existence of two dimensional Dirac fermions in CaMnBi2_2 with Bi square nets.Comment: 5 pages, 4 figure

    Chemistry of layered d-metal pnictide oxides and their potential as candidates for new superconductors

    Full text link
    Layered d-metal pnictide oxides are a unique class of compounds which consists of characteristic d-metal pnictide layers and metal oxide layers. More than 100 of these layered compounds, including the recently discovered Fe-based superconducting pnictide oxides, can be classified into 9 structure types. These structure types and the chemical and physical properties of the characteristic d-metal pnictide layers and metal oxide layers of the layered d-metal pnictide oxides are reviewed and discussed. Furthermore, possible approaches to design new superconductors based on these layered d-metal pnictide oxides are proposed.Comment: 29 pages including 6 tables and 2 figure

    Ba{1-x}KxMn2As2: An Antiferromagnetic Local-Moment Metal

    Full text link
    The compound BaMn2As2 with the tetragonal ThCr2Si2 structure is a local-moment antiferromagnetic insulator with a Neel temperature TN = 625 K and a large ordered moment mu = 3.9 mu_B/Mn. We demonstrate that this compound can be driven metallic by partial substitution of Ba by K, while retaining the same crystal and antiferromagnetic structures together with nearly the same high TN and large mu. Ba_{1-x}K_xMn2As2 is thus the first metallic ThCr2Si2-type MAs-based system containing local 3d transition metal M magnetic moments, with consequences for the ongoing debate about the local moment versus itinerant pictures of the FeAs-based superconductors and parent compounds. The Ba_{1-x}K_xMn2As2 class of compounds also forms a bridge between the layered iron pnictides and cuprates and may be useful to test theories of high Tc superconductivity.Comment: 5 two-column typeset pages, 5 figures, 20 references; v2: minor revisions, 4 new references, published versio

    Cryptic diversity of the jewel beetles Agrilus viridis (Coleoptera: Buprestidae) hosted on hazelnut

    Get PDF
    The genus Agrilus (Coleoptera: Buprestidae) represents a taxonomic puzzle, since the boundaries between species, subspecies and morphotypes tied to different host plants are sometimes difficult to establish on morphological characteristics alone. Some Agrilus species can cause severe agricultural damage; this makes correct distinctions of the taxon and knowing whether the insects switch from one host plant to another important. This study of mtDNA examined the genetic characteristics of lineages of A. viridis, a jewel beetle recently found causing damage to the hazelnut Corylus avellana in NW Italy. Three mitochondrial markers (a portion of the 12S rDNA and a DNA-fragment including partial NADH dehydrogenase subunit I gene, the tRNA Leucine gene and partial 16S rDNA, and partial  Cytochrome c oxidase) were compared between individuals collected on birch Betula sp., beech Fagus sp., willow Salix sp., alder Alnus sp. and hazelnut. We found a high genetic distance between A. viridis sampled on different host plants, while individuals sampled on the same host plant were similar despite a considerable geographic gap between sampled areas. Our study supports the general pattern for strong ecological separation between populations living on different host plants

    Magnetic and electrical properties and carrier doping effects on the Fe-based host compound Sr4Sc2Fe2As2O6

    Full text link
    Additional charge carriers were introduced to the iron oxyarsenide Sr4Sc2Fe2As2O6 under a high-pressure condition, followed by measurements of electrical resistivity, Hall coefficient, and magnetic susceptibility. The host compound Sr4Sc2Fe2As2O6 shows metallic conductivity down to ~200 K and turns to show a semiconducting-like conductivity accompanied by a positive magneto-resistance (22% at 70 kOe). Although the carrier density is comparable at 300 K (5.9x1021 cm-3) with that of the other Fe-based superconductors, no superconductivity appears down to 2 K. This is primarily because the net carrier density decreases over 3 orders of magnitude on cooling and additionally a possible magnetic order at ~120 K prevents carriers from pairing. The properties were altered largely by introducing the additional carriers.Comment: 22 pages, 9 figures, 1 table, 41 references, accepted Phys. Rev. B 201

    Possible high temperature superconductivity in Ti-doped A-Sc-Fe-As-O (A= Ca, Sr) system

    Full text link
    We report a systematic study on the effect of partial substitution of Sc3+^{3+} by Ti4+^{4+} in Sr2_{2}ScFeAsO3_{3}, Ca2_{2}ScFeAsO3_{3} and Sr3_{3}Sc2_{2}Fe2_{2}As2_{2}O5_{5} on their electrical properties. High level of doping results in an increased carrier concentration and leads to the appearance of superconductivity with the onset of Tc_{c} up to 45 K.Comment: 8 pages, 4 figures, 2 new figure
    corecore