1,328 research outputs found
Context based querying of scientific data: changing querying paradigms?
We are investigating and applying a semantically enhanced query answering machine for the needs of addressing semantically meaningful data and operations within a scientific information system. We illustrate a context based
querying paradigm on the basis of a Regional Avalanche Information and Forecasting System - RAIFoS which is concerned with the collection and analysis of snow and weather related physical parameters in the Swiss Alps. The querying paradigm relies upon the issue of interactively constructing a semantically valid query rather than formulating one in a database specific query language
and for a particular implementation model. In order to achieve this goal, the query answering machine has to make inferences concerning the properties and value domains, as well as data analysis operations, which are semantically valid within particular contexts. These inferences take place when the intended query is being constructed interactively on a Web-based blackboard. A graph-based display presentation formalism is used with elements including natural language terms, measurement units, statistical quantifiers and/or specific value domains.
A meta-data database is used to organise and provide the elements of the graph each time the graph, and consequently the intended query, is expanded or further refined. Finally, the displayed graph is transformed into elements of the implementation model from which, in turn, SQL statements and/or sequences of statistical operations are created
Recommended from our members
Effects of Detention for Flooding Mitigation under Climate Change Scenarios— Implication for Landscape Planning in the Charles River Watershed, Massachusetts, USA
Climate change has posed increased risks to environmental hazards (e.g., flooding, droughts, hurricanes) in addition to new challenges under climate change impacts (e.g., early snow melt, sea level rises, heat waves). Floods are omnipresent in almost every city in the United States and account for the most economic losses than any other single geophysical hazard (White and Haas 1975). Previous climate change studies have suggested promising trends of increasing temperature and changing precipitation patterns as well as increased intensity and duration of storm events that are likely to result in more flooding events in the Northeast region. Flooding mitigation strategies have been focusing on structured engineering solutions such as dams and dikes along streams and rivers since the late 1910s. In recent decades, in lieu of conventionally engineered infrastructure, scholars have called for “soft” strategies such as green infrastructure (Thomas and Littlewood 2010) and land use planning (Burby 1998; Godschalk 2004) for comprehensive hazard mitigation and stormwater management integrated into planning and design interventions for flooding mitigation.
Stormwater detention is among the most prevalent stormwater management practices for flooding mitigation; however, the perceived benefits could be overestimated without empirical study (Beecham et al. 2005). In addition, planners are now facing challenges to cope with uncertainties from climate change impacts under a paradox between making room for water while managing growth in land use planning. For local planners and stakeholders to make adaptive land use decisions for climate change, this paper aims to answer two key questions: (1) to what degree and in what way does climate change have impacts on long-term flooding hazards? (2) how much detention area in the watershed would be needed for mitigating flooding hazards induced by climate change? And what do the results imply for innovations in landscape planning
Modulation Instability of Ultrashort Pulses in Quadratic Nonlinear Media beyond the Slowly Varying Envelope Approximation
We report a modulational instability (MI) analysis of a mathematical model
appropriate for ultrashort pulses in cascaded quadratic-cubic nonlinear media
beyond the so-called slowly varying envelope approximation. Theoretically
predicted MI properties are found to be in good agreement with numerical
simulation. The study shows the possibility of controlling the generation of MI
and formation of solitons in a cascaded quadratic-cubic media in the few cycle
regimes. We also find that stable propagation of soliton-like few-cycle pulses
in the medium is subject to the fulfilment of the modulation instability
criteria
Differential regulation of gene expression pathways with dexamethasone and ACTH after early life seizures.
Early-life seizures (ELS) are associated with persistent cognitive deficits such as ADHD and memory impairment. These co-morbidities have a dramatic negative impact on the quality of life of patients. Therapies that improve cognitive outcomes have enormous potential to improve patients\u27 quality of life. Our previous work in a rat flurothyl-induction model showed that administration of adrenocorticotropic hormone (ACTH) at time of seizure induction led to improved learning and memory in the animals despite no effect on seizure latency or duration. Administration of dexamethasone (Dex), a corticosteroid, did not have the same positive effect on learning and memory and has even been shown to exacerbate injury in a rat model of temporal lobe epilepsy. We hypothesized that ACTH exerted positive effects on cognitive outcomes through beneficial changes to gene expression and proposed that administration of ACTH at seizure induction would return gene-expression in the brain towards the normal pattern of expression in the Control animals whereas Dex would not. Twenty-six Sprague-Dawley rats were randomized into vehicle- Control, and ACTH-, Dex-, and vehicle- ELS. Rat pups were subjected to 60 flurothyl seizures from P5 to P14. After seizure induction, brains were removed and the hippocampus and PFC were dissected, RNA was extracted and sequenced, and differential expression analysis was performed using generalized estimating equations. Differential expression analysis showed that ACTH pushes gene expression in the brain back to a more normal state of expression through enrichment of pathways involved in supporting homeostatic balance and down-regulating pathways that might contribute to excitotoxic cell-damage post-ELS
Two-color ionization of hydrogen by short intense pulses
Photoelectron energy spectra resulting by the interaction of hydrogen with
two short pulses having carrier frequencies, respectively, in the range of the
infrared and XUV regions have been calculated. The effects of the pulse
duration and timing of the X-ray pulse on the photoelectron energy spectra are
discussed. Analysis of the spectra obtained for very long pulses show that
certain features may be explained in terms of quantum interferences in the time
domain. It is found that, depending on the duration of the X-ray pulse, ripples
in the energy spectra separated by the infrared photon energy may appear.
Moreover, the temporal shape of the low frequency radiation field may be
inferred by the breadth of the photoelectron energy spectra.Comment: 12 pages, 8 figure
2.5% efficient organic plastic solar cells
We show that the power conversion efficiency of organic photovoltaic devices based on a conjugated polymer/methanofullerene blend is dramatically affected by molecular morphology. By structuring the blend to be a more intimate mixture that contains less phase segregation of methanofullerenes, and simultaneously increasing the degree of interactions between conjugated polymer chains, we have fabricated a device with a power conversion efficiency of 2.5% under AM1.5 illumination. This is a nearly threefold enhancement over previously reported values for such a device, and it approaches what is needed for the practical use of these devices for harvesting energy from sunlight.
Nuclear classical dynamics of H in intense laser field
In the first part of this paper, the different distinguishable pathways and
regions of the single and sequential double ionization are determined and
discussed. It is shown that there are two distinguishable pathways for the
single ionization and four distinct pathways for the sequential double
ionization. It is also shown that there are two and three different regions of
space which are related to the single and double ionization respectively. In
the second part of the paper, the time dependent Schr\"{o}dinger and Newton
equations are solved simultaneously for the electrons and the nuclei of H
respectively. The electrons and nuclei dynamics are separated on the base of
the adiabatic approximation. The soft-core potential is used to model the
electrostatic interaction between the electrons and the nuclei. A variety of
wavelengths (390 nm, 532 nm and 780 nm) and intensities (
and ) of the ultrashort intense laser
pulses with a sinus second order envelope function are used. The behaviour of
the time dependent classical nuclear dynamics in the absence and present of the
laser field are investigated and compared. In the absence of the laser field,
there are three distinct sections for the nuclear dynamics on the electronic
ground state energy curve. The bond hardening phenomenon does not appear in
this classical nuclear dynamics simulation.Comment: 16 pages, 7 figure
Asymmetric emission of high energy electrons in the two-dimensional hydrodynamic expansion of large xenon clusters irradiated by intense laser fields
Energy spectra and angular distributions have been measured of electrons that
are emitted upon disassembly of following irradiation by intense
(10 W cm) laser pulses whose durations are varied over
the 100-2200 fs range. The cluster explosion dynamics occur in the hydrodynamic
regime. Electron emission is found to be unexpectedly asymmetric and exhibits a
resonance when the laser pulse duration is 1 ps. These results are
rationalized by extending the hydrodynamic model to also take into account the
force that the light field exerts on the polarization charge that is induced on
surface of the cluster. We show that the magnitude of this electrostrictive
force is comparable to those of Coulombic and the hydrodynamic forces, and it
exhibits resonance behavior. Contrary to earlier understanding, we find that
low-energy electrons are connected to the resonance in energy absorption by the
cluster. The high-energy electrons seem to be produced by a mechanism that is
not so strongly influenced by the resonance.Comment: 1 Revtex file, 8 figs. in eps forma
- …