1,328 research outputs found

    Context based querying of scientific data: changing querying paradigms?

    Get PDF
    We are investigating and applying a semantically enhanced query answering machine for the needs of addressing semantically meaningful data and operations within a scientific information system. We illustrate a context based querying paradigm on the basis of a Regional Avalanche Information and Forecasting System - RAIFoS which is concerned with the collection and analysis of snow and weather related physical parameters in the Swiss Alps. The querying paradigm relies upon the issue of interactively constructing a semantically valid query rather than formulating one in a database specific query language and for a particular implementation model. In order to achieve this goal, the query answering machine has to make inferences concerning the properties and value domains, as well as data analysis operations, which are semantically valid within particular contexts. These inferences take place when the intended query is being constructed interactively on a Web-based blackboard. A graph-based display presentation formalism is used with elements including natural language terms, measurement units, statistical quantifiers and/or specific value domains. A meta-data database is used to organise and provide the elements of the graph each time the graph, and consequently the intended query, is expanded or further refined. Finally, the displayed graph is transformed into elements of the implementation model from which, in turn, SQL statements and/or sequences of statistical operations are created

    Modulation Instability of Ultrashort Pulses in Quadratic Nonlinear Media beyond the Slowly Varying Envelope Approximation

    Full text link
    We report a modulational instability (MI) analysis of a mathematical model appropriate for ultrashort pulses in cascaded quadratic-cubic nonlinear media beyond the so-called slowly varying envelope approximation. Theoretically predicted MI properties are found to be in good agreement with numerical simulation. The study shows the possibility of controlling the generation of MI and formation of solitons in a cascaded quadratic-cubic media in the few cycle regimes. We also find that stable propagation of soliton-like few-cycle pulses in the medium is subject to the fulfilment of the modulation instability criteria

    Differential regulation of gene expression pathways with dexamethasone and ACTH after early life seizures.

    Get PDF
    Early-life seizures (ELS) are associated with persistent cognitive deficits such as ADHD and memory impairment. These co-morbidities have a dramatic negative impact on the quality of life of patients. Therapies that improve cognitive outcomes have enormous potential to improve patients\u27 quality of life. Our previous work in a rat flurothyl-induction model showed that administration of adrenocorticotropic hormone (ACTH) at time of seizure induction led to improved learning and memory in the animals despite no effect on seizure latency or duration. Administration of dexamethasone (Dex), a corticosteroid, did not have the same positive effect on learning and memory and has even been shown to exacerbate injury in a rat model of temporal lobe epilepsy. We hypothesized that ACTH exerted positive effects on cognitive outcomes through beneficial changes to gene expression and proposed that administration of ACTH at seizure induction would return gene-expression in the brain towards the normal pattern of expression in the Control animals whereas Dex would not. Twenty-six Sprague-Dawley rats were randomized into vehicle- Control, and ACTH-, Dex-, and vehicle- ELS. Rat pups were subjected to 60 flurothyl seizures from P5 to P14. After seizure induction, brains were removed and the hippocampus and PFC were dissected, RNA was extracted and sequenced, and differential expression analysis was performed using generalized estimating equations. Differential expression analysis showed that ACTH pushes gene expression in the brain back to a more normal state of expression through enrichment of pathways involved in supporting homeostatic balance and down-regulating pathways that might contribute to excitotoxic cell-damage post-ELS

    Two-color ionization of hydrogen by short intense pulses

    Full text link
    Photoelectron energy spectra resulting by the interaction of hydrogen with two short pulses having carrier frequencies, respectively, in the range of the infrared and XUV regions have been calculated. The effects of the pulse duration and timing of the X-ray pulse on the photoelectron energy spectra are discussed. Analysis of the spectra obtained for very long pulses show that certain features may be explained in terms of quantum interferences in the time domain. It is found that, depending on the duration of the X-ray pulse, ripples in the energy spectra separated by the infrared photon energy may appear. Moreover, the temporal shape of the low frequency radiation field may be inferred by the breadth of the photoelectron energy spectra.Comment: 12 pages, 8 figure

    2.5% efficient organic plastic solar cells

    Get PDF
    We show that the power conversion efficiency of organic photovoltaic devices based on a conjugated polymer/methanofullerene blend is dramatically affected by molecular morphology. By structuring the blend to be a more intimate mixture that contains less phase segregation of methanofullerenes, and simultaneously increasing the degree of interactions between conjugated polymer chains, we have fabricated a device with a power conversion efficiency of 2.5% under AM1.5 illumination. This is a nearly threefold enhancement over previously reported values for such a device, and it approaches what is needed for the practical use of these devices for harvesting energy from sunlight.

    Nuclear classical dynamics of H2_2 in intense laser field

    Full text link
    In the first part of this paper, the different distinguishable pathways and regions of the single and sequential double ionization are determined and discussed. It is shown that there are two distinguishable pathways for the single ionization and four distinct pathways for the sequential double ionization. It is also shown that there are two and three different regions of space which are related to the single and double ionization respectively. In the second part of the paper, the time dependent Schr\"{o}dinger and Newton equations are solved simultaneously for the electrons and the nuclei of H2_2 respectively. The electrons and nuclei dynamics are separated on the base of the adiabatic approximation. The soft-core potential is used to model the electrostatic interaction between the electrons and the nuclei. A variety of wavelengths (390 nm, 532 nm and 780 nm) and intensities (5×10145\times10^{14} Wcm2Wcm^{-2} and 5×1015 5\times10^{15} Wcm2Wcm^{-2}) of the ultrashort intense laser pulses with a sinus second order envelope function are used. The behaviour of the time dependent classical nuclear dynamics in the absence and present of the laser field are investigated and compared. In the absence of the laser field, there are three distinct sections for the nuclear dynamics on the electronic ground state energy curve. The bond hardening phenomenon does not appear in this classical nuclear dynamics simulation.Comment: 16 pages, 7 figure

    Asymmetric emission of high energy electrons in the two-dimensional hydrodynamic expansion of large xenon clusters irradiated by intense laser fields

    Full text link
    Energy spectra and angular distributions have been measured of electrons that are emitted upon disassembly of Xe150000Xe_{150000} following irradiation by intense (10151016^{15}-10^{16} W cm2^{-2}) laser pulses whose durations are varied over the 100-2200 fs range. The cluster explosion dynamics occur in the hydrodynamic regime. Electron emission is found to be unexpectedly asymmetric and exhibits a resonance when the laser pulse duration is \sim1 ps. These results are rationalized by extending the hydrodynamic model to also take into account the force that the light field exerts on the polarization charge that is induced on surface of the cluster. We show that the magnitude of this electrostrictive force is comparable to those of Coulombic and the hydrodynamic forces, and it exhibits resonance behavior. Contrary to earlier understanding, we find that low-energy electrons are connected to the resonance in energy absorption by the cluster. The high-energy electrons seem to be produced by a mechanism that is not so strongly influenced by the resonance.Comment: 1 Revtex file, 8 figs. in eps forma
    corecore