23 research outputs found

    Real-time simulation and hardware-in-the-loop approaches for integrating renewable energy sources into smart grids  : challenges & actions

    Get PDF
    The integration of distributed renewable energy sources and the multi-domain behaviours inside the cyber-physical energy system (smart grids) draws up major challenges. Their validation and roll out requires careful assessment, in term of modelling, simulation and testing. The traditional approach focusing on a particular object, actual hardware or a detailed model, while drastically simplifying the remainder of the system under test, is no longer sufficient. Real-time simulation and Hardware-in-the-Loop (HIL) techniques emerge as indispensable tools for validating the behaviour of renewable sources as well as their impact/interaction to with the cyber-physical energy system. This paper aims to provide an overview of the present status-quo of real-time and HIL approaches used for smart grids and their readiness for cyber-physical experiments. We investigate the current limitations of HIL techniques and point out necessary future developments. Subsequently, the paper highlights challenges that need specific attention as well as ongoing actions and further research directions

    Proof search for programming in Intuitionistic Linear Logic (Extended Abstract)

    No full text
    Introduction Linear logic (denoted LL) [6] is a powerful and expressive logic with connections to a variety of topics in computer science as logic programming, concurrency or functional programming. From the logical side, LL combines the constructive content of Intuitionistic Logic with the symmetries of Classical Logic and from the computation side, it offers a control on resource management and evaluation order. Concerning functional programming, applications of LL to computation can be seen through the Curry-Howard isomorphism in which propositions are interpreted as types, proofs as programs and proof normalization process as computation. Works have been recently devoted to term assignment for intuitionistic linear logic (ILL) [3, 12] and full LL [1] with proposals of linear lambda calculi having important properties as subject-reduction or substitution property. Having natural deduction and sequent calculus proof systems of ILL (that are proved equivalent), we can invest

    In vivo gene transfer into the ocular ciliary muscle mediated by ultrasound and microbubbles.

    No full text
    This study aimed to assess application of ultrasound (US) combined with microbubbles (MB) to transfect the ciliary muscle of rat eyes. Reporter DNA plasmids encoding for Gaussia luciferase, β-galactosidase or the green fluorescent protein (GFP), alone or mixed with 50% Artison MB, were injected into the ciliary muscle, with or without US exposure (US set at 1 MHz, 2 W/cm(2), 50% duty cycle for 2 min). Luciferase activity was measured in ocular fluids at 7 and 30 days after sonoporation. At 1 week, the US+MB treatment showed a significant increase in luminescence compared with control eyes, injected with plasmid only, with or without MB (×2.6), and, reporter proteins were localized in the ciliary muscle by histochemical analysis. At 1 month, a significant decrease in luciferase activity was observed in all groups. A rise in lens and ciliary muscle temperature was measured during the procedure but did not result in any observable or microscopic damages at 1 and 8 days. The feasibility to transfer gene into the ciliary muscle by US and MB suggests that sonoporation may allow intraocular production of proteins for the treatment of inflammatory, angiogenic and/or degenerative retinal diseases

    LABELLED PROOF SYSTEMS FOR INTUITIONISTIC provability

    No full text
    In this paper, we propose new labelled proof systems to analyse the intuitionistic provability in classical and linear logics. An important point is to understand how search in a non-classical logic can be viewed as a perturbation of search in classical logic. Therefore, suitable characterizations of intuitionistic provability and related labelled sequent calculi are defined for linear logic. An alternative approach, based on the notion of proof-net and on the definition of suitable labelled classical proof-nets, allows to directly study the intuitionistic provability by constructing intuitionistic proof-nets for sequents of classical linear logic
    corecore