199 research outputs found
Stellar laboratories: new Ge V and Ge VI oscillator strengths and their validation in the hot white dwarf RE 0503-289
State-of-the-art spectral analysis of hot stars by means of non-LTE
model-atmosphere techniques has arrived at a high level of sophistication. The
analysis of high-resolution and high-S/N spectra, however, is strongly
restricted by the lack of reliable atomic data for highly ionized species from
intermediate-mass metals to trans-iron elements. Especially data for the latter
has only been sparsely calculated. Many of their lines are identified in
spectra of extremely hot, hydrogen-deficient post-AGB stars. A reliable
determination of their abundances establishes crucial constraints for AGB
nucleosynthesis simulations and, thus, for stellar evolutionary theory.
In a previous analysis of the UV spectrum of RE 0503-289, spectral lines of
highly ionized Ga, Ge, As, Se, Kr, Mo, Sn, Te, I, and Xe were identified.
Individual abundance determinations are hampered by the lack of reliable
oscillator strengths. Most of these identified lines stem from Ge V. In
addition, we identified Ge VI lines for the first time. We calculated Ge V and
Ge VI oscillator strengths to consider their radiative and collisional
bound-bound transitions in detail in our non-LTE stellar-atmosphere models for
the analysis of the Ge IV - VI spectrum exhibited in high-resolution and
high-S/N UV spectra of RE 0503-289. We identify four Ge IV, 37 Ge V, and seven
Ge VI lines. Most of these are identified for the first time in any star. We
reproduce almost all Ge IV, Ge VI, and Ge VI lines in the observed spectrum of
RE 0503-289 (Teff = 70 kK, log g = 7.5) at log Ge = -3.8 +/- 0.3 (mass
fraction, about 650 times solar).
Reliable measurements and calculations of atomic data are a prerequisite for
stellar-atmosphere modeling. Our oscillator-strength calculations have allowed,
for the first time, Ge V and Ge VI lines to be successfully reproduced in a
white dwarf's spectrum and to determine its photospheric Ge abundance.Comment: 54 pages, 8 figure
Oscillator Strengths and Damping Constants for Atomic Lines in the J and H Bands
We have built a line list in the near-infrared J and H bands (1.00-1.34,
1.49-1.80 um) by gathering a series of laboratory and computed line lists.
Oscillator strengths and damping constants were computed or obtained by fitting
the solar spectrum.
The line list presented in this paper is, to our knowledge, the most complete
one now available, and supersedes previous lists.Comment: Accepted, Astrophysical Journal Supplement, tentatively scheduled for
the Sep. 1999 Vol. 124 #1 issue. Text and tables also available at
http://www.iagusp.usp.br/~jorge
Recommended from our members
Transition Probabilities Of Astrophysical Interest In The Niobium Ions Nb+ And Nb2+
Aims. We attempt to derive accurate transition probabilities for astrophysically interesting spectral lines of Nb II and Nb III and determine the niobium abundance in the Sun and metal-poor stars rich in neutron-capture elements. Methods. We used the time-resolved laser-induced fluorescence technique to measure radiative lifetimes in Nb II. Branching fractions were measured from spectra recorded using Fourier transform spectroscopy. The radiative lifetimes and the branching fractions were combined yielding transition probabilities. In addition, we calculated lifetimes and transition probablities in Nb II and Nb III using a relativistic Hartree-Fock method that includes core polarization. Abundances of the sun and five metal-poor stars were derived using synthetic spectra calculated with the MOOG code, including hyperfine broadening of the lines. Results. We present laboratory measurements of 17 radiative lifetimes in Nb II. By combining these lifetimes with branching fractions for lines depopulating the levels, we derive the transition probabilities of 107 Nb II lines from 4d(3)5p configuration in the wavelength region 2240-4700 angstrom. For the first time, we present theoretical transition probabilities of 76 Nb III transitions with wavelengths in the range 1430-3140 angstrom. The derived solar photospheric niobium abundance log epsilon(circle dot) = 1.44 +/- 0.06 is in agreement with the meteoritic value. The stellar Nb/Eu abundance ratio determined for five metal-poor stars confirms that the r-process is a dominant production method for the n-capture elements in these stars.Integrated Initiative of Infrastructure RII3-CT-2003-506350Swedish Research CouncilKnut and Alice Wallenberg FoundationBelgian FRS-FNRSFRIAUS National Science Foundation AST-0607708, AST-0908978Astronom
Neutron-Capture Elements in the Early Galaxy: Insights from a Large Sample of Metal-Poor Giants
New abundances for neutron-capture (n-capture) elements in a large sample of
metal-poor giants from the Bond survey are presented. The spectra were acquired
with the KPNO 4-m echelle and coude feed spectrographs, and have been analyzed
using LTE fine-analysis techniques with both line analysis and spectral
synthesis. Abundances of eight n-capture elements (Sr, Y, Zr, Ba, La, Nd, Eu,
Dy) in 43 stars have been derived from blue (lambda = 4070--4710, R~20,000, S/N
ratio~100-200) echelle spectra and red (lambda = 6100--6180, R~22,000, S/N
ratio~100-200) coude spectra, and the abundance of Ba only has been derived
from the red spectra for an additional 27 stars. Overall, the abundances show
clear evidence for a large star-to-star dispersion in the heavy element-to-iron
ratios. The new data also confirm that at metallicities [Fe/H] <~ --2.4, the
abundance pattern of the heavy (Z >= 56) n-capture elements in most giants is
well-matched to a scaled Solar System r-process nucleosynthesis pattern. The
onset of the main r-process can be seen at [Fe/H] ~ --2.9. Contributions from
the s-process can first be seen in some stars with metallicities as low as
[Fe/H] ~ --2.75, and are present in most stars with metallicities [Fe/H] >
--2.3. The lighter n-capture elements (Sr-Y-Zr) are enhanced relative to the
heavier r-process element abundances. Their production cannot be attributed
solely to any combination of the Solar System r- and main s-processes, but
requires a mixture of material from the r-process and from an additional
n-capture process which can operate at early Galactic time.Comment: Text + 5 Tables and 11 Figures: Submitted to the Astrophysical
Journa
Lifetimes along perturbed Rydberg series in neutral thallium
Radiative lifetimes of 15 Tl I levels belonging to the 6s(2)ns(2)S(1/2) (n = 7-14) and 6s(2)nd(2)D(3/2) Rydberg series (n = 6-12) have been measured using a time-resolved laser-induced fluorescence technique. All the measured levels have been excited from the ground state 6s(2)6p(2)P(1/2)(0) (odd parity) with a single-step excitation process. The general perturbation of the ns series by the 6s6p(2) configuration and the corresponding modification of the lifetimes are adequately reproduced by a theoretical model including core-polarization effects and combined with a least-squares fit to the observed energy levels. The general behaviour of the lifetime values for the 6s(2)np odd levels along the Rydberg series is also well reproduced. The use of the multiconfiguration quantum defect theory has allowed us to obtain lifetime values along the 6s(2)ns(2)S(1/2) series up to levels with n = 31
Recommended from our members
Multiconfiguration Dirac-Fock Wavelengths and Transition Rates in the X-Ray Spectra of Highly Charged Ga-like Ions from Yb39+ to U61+
Recommended from our members
Relativistic atomic data for EUV and X-ray Spectra of highly charged Cu-, Zn-, Ga-, and Ge-like ions (70 (less than or equal to) Z (less than or equal to) 92)
The IntraCluster Medium: An Invariant Stellar IMF
Evidence supporting the hypothesis of an invariant stellar Initial Mass
Function is strong and varied. The intra-cluster medium in rich clusters of
galaxies is one of the few contrary locations where recent interpretations of
the chemical abundances have favoured an IMF that is biased towards massive
stars, compared to the `normal' IMF. This interpretation hinges upon the
neglect of Type Ia supernovae to the ICM enrichment, and a particular choice of
the nucleosynthesis yields of Type II supernovae. We demonstrate here that when
one adopts yields determined empirically from observations of Galactic stars,
rather than the uncertain model yields, a self-consistent picture may be
obtained with an invariant stellar IMF, and about half of the iron in the ICM
being produced by Type Ia supernovae.Comment: 9 pages, LateX (aaspp4 macro), including one postscript figure.
Accepted, ApJ Letter
Rubidium and lead abundances in giant stars of the globular clusters M4 and M5
We present measurements of the neutron-capture elements Rb and Pb for bright
giants in the globular clusters M4 and M5. The clusters are of similar
metallicity ([Fe/H] = -1.2) but M4 is decidedly s-process enriched relative to
M5: [Ba/Fe] = +0.6 for M4 but 0.0 for M5. The Rb and Pb abundances were derived
by comparing synthetic spectra with high-resolution, high signal-to-noise ratio
spectra obtained with MIKE on the Magellan telescope. Abundances of Y, Zr, La,
and Eu were also obtained. In M4, the mean abundances from 12 giants are
[Rb/Fe] = 0.39 +/- 0.02 (sigma = 0.07), [Rb/Zr] = 0.17 +/- 0.03 (sigma = 0.08),
and [Pb/Fe] = 0.30 +/- 0.02 (sigma = 0.07). In M5, the mean abundances from two
giants are [Rb/Fe] = 0.00 +/- 0.05 (sigma = 0.06), [Rb/Zr] = 0.08 +/- 0.08
(sigma = 0.11), and [Pb/Fe] = -0.35 +/- 0.02 (sigma = 0.04). Within the
measurement uncertainties, the abundance ratios [Rb/Fe], [Pb/Fe] and [Rb/X] for
X = Y, Zr, La are constant from star-to-star in each cluster and none of these
ratios are correlated with O or Na abundances. While M4 has a higher Rb
abundance than M5, the ratios [Rb/X] are similar in both clusters indicating
that the nature of the s-products are very similar for each cluster but the gas
from which M4's stars formed had a higher concentration of these products.Comment: Accepted for publication in Ap
- …