199 research outputs found

    Stellar laboratories: new Ge V and Ge VI oscillator strengths and their validation in the hot white dwarf RE 0503-289

    Get PDF
    State-of-the-art spectral analysis of hot stars by means of non-LTE model-atmosphere techniques has arrived at a high level of sophistication. The analysis of high-resolution and high-S/N spectra, however, is strongly restricted by the lack of reliable atomic data for highly ionized species from intermediate-mass metals to trans-iron elements. Especially data for the latter has only been sparsely calculated. Many of their lines are identified in spectra of extremely hot, hydrogen-deficient post-AGB stars. A reliable determination of their abundances establishes crucial constraints for AGB nucleosynthesis simulations and, thus, for stellar evolutionary theory. In a previous analysis of the UV spectrum of RE 0503-289, spectral lines of highly ionized Ga, Ge, As, Se, Kr, Mo, Sn, Te, I, and Xe were identified. Individual abundance determinations are hampered by the lack of reliable oscillator strengths. Most of these identified lines stem from Ge V. In addition, we identified Ge VI lines for the first time. We calculated Ge V and Ge VI oscillator strengths to consider their radiative and collisional bound-bound transitions in detail in our non-LTE stellar-atmosphere models for the analysis of the Ge IV - VI spectrum exhibited in high-resolution and high-S/N UV spectra of RE 0503-289. We identify four Ge IV, 37 Ge V, and seven Ge VI lines. Most of these are identified for the first time in any star. We reproduce almost all Ge IV, Ge VI, and Ge VI lines in the observed spectrum of RE 0503-289 (Teff = 70 kK, log g = 7.5) at log Ge = -3.8 +/- 0.3 (mass fraction, about 650 times solar). Reliable measurements and calculations of atomic data are a prerequisite for stellar-atmosphere modeling. Our oscillator-strength calculations have allowed, for the first time, Ge V and Ge VI lines to be successfully reproduced in a white dwarf's spectrum and to determine its photospheric Ge abundance.Comment: 54 pages, 8 figure

    Oscillator Strengths and Damping Constants for Atomic Lines in the J and H Bands

    Full text link
    We have built a line list in the near-infrared J and H bands (1.00-1.34, 1.49-1.80 um) by gathering a series of laboratory and computed line lists. Oscillator strengths and damping constants were computed or obtained by fitting the solar spectrum. The line list presented in this paper is, to our knowledge, the most complete one now available, and supersedes previous lists.Comment: Accepted, Astrophysical Journal Supplement, tentatively scheduled for the Sep. 1999 Vol. 124 #1 issue. Text and tables also available at http://www.iagusp.usp.br/~jorge

    Neutron-Capture Elements in the Early Galaxy: Insights from a Large Sample of Metal-Poor Giants

    Full text link
    New abundances for neutron-capture (n-capture) elements in a large sample of metal-poor giants from the Bond survey are presented. The spectra were acquired with the KPNO 4-m echelle and coude feed spectrographs, and have been analyzed using LTE fine-analysis techniques with both line analysis and spectral synthesis. Abundances of eight n-capture elements (Sr, Y, Zr, Ba, La, Nd, Eu, Dy) in 43 stars have been derived from blue (lambda = 4070--4710, R~20,000, S/N ratio~100-200) echelle spectra and red (lambda = 6100--6180, R~22,000, S/N ratio~100-200) coude spectra, and the abundance of Ba only has been derived from the red spectra for an additional 27 stars. Overall, the abundances show clear evidence for a large star-to-star dispersion in the heavy element-to-iron ratios. The new data also confirm that at metallicities [Fe/H] <~ --2.4, the abundance pattern of the heavy (Z >= 56) n-capture elements in most giants is well-matched to a scaled Solar System r-process nucleosynthesis pattern. The onset of the main r-process can be seen at [Fe/H] ~ --2.9. Contributions from the s-process can first be seen in some stars with metallicities as low as [Fe/H] ~ --2.75, and are present in most stars with metallicities [Fe/H] > --2.3. The lighter n-capture elements (Sr-Y-Zr) are enhanced relative to the heavier r-process element abundances. Their production cannot be attributed solely to any combination of the Solar System r- and main s-processes, but requires a mixture of material from the r-process and from an additional n-capture process which can operate at early Galactic time.Comment: Text + 5 Tables and 11 Figures: Submitted to the Astrophysical Journa

    Lifetimes along perturbed Rydberg series in neutral thallium

    Get PDF
    Radiative lifetimes of 15 Tl I levels belonging to the 6s(2)ns(2)S(1/2) (n = 7-14) and 6s(2)nd(2)D(3/2) Rydberg series (n = 6-12) have been measured using a time-resolved laser-induced fluorescence technique. All the measured levels have been excited from the ground state 6s(2)6p(2)P(1/2)(0) (odd parity) with a single-step excitation process. The general perturbation of the ns series by the 6s6p(2) configuration and the corresponding modification of the lifetimes are adequately reproduced by a theoretical model including core-polarization effects and combined with a least-squares fit to the observed energy levels. The general behaviour of the lifetime values for the 6s(2)np odd levels along the Rydberg series is also well reproduced. The use of the multiconfiguration quantum defect theory has allowed us to obtain lifetime values along the 6s(2)ns(2)S(1/2) series up to levels with n = 31

    The IntraCluster Medium: An Invariant Stellar IMF

    Get PDF
    Evidence supporting the hypothesis of an invariant stellar Initial Mass Function is strong and varied. The intra-cluster medium in rich clusters of galaxies is one of the few contrary locations where recent interpretations of the chemical abundances have favoured an IMF that is biased towards massive stars, compared to the `normal' IMF. This interpretation hinges upon the neglect of Type Ia supernovae to the ICM enrichment, and a particular choice of the nucleosynthesis yields of Type II supernovae. We demonstrate here that when one adopts yields determined empirically from observations of Galactic stars, rather than the uncertain model yields, a self-consistent picture may be obtained with an invariant stellar IMF, and about half of the iron in the ICM being produced by Type Ia supernovae.Comment: 9 pages, LateX (aaspp4 macro), including one postscript figure. Accepted, ApJ Letter

    Rubidium and lead abundances in giant stars of the globular clusters M4 and M5

    Get PDF
    We present measurements of the neutron-capture elements Rb and Pb for bright giants in the globular clusters M4 and M5. The clusters are of similar metallicity ([Fe/H] = -1.2) but M4 is decidedly s-process enriched relative to M5: [Ba/Fe] = +0.6 for M4 but 0.0 for M5. The Rb and Pb abundances were derived by comparing synthetic spectra with high-resolution, high signal-to-noise ratio spectra obtained with MIKE on the Magellan telescope. Abundances of Y, Zr, La, and Eu were also obtained. In M4, the mean abundances from 12 giants are [Rb/Fe] = 0.39 +/- 0.02 (sigma = 0.07), [Rb/Zr] = 0.17 +/- 0.03 (sigma = 0.08), and [Pb/Fe] = 0.30 +/- 0.02 (sigma = 0.07). In M5, the mean abundances from two giants are [Rb/Fe] = 0.00 +/- 0.05 (sigma = 0.06), [Rb/Zr] = 0.08 +/- 0.08 (sigma = 0.11), and [Pb/Fe] = -0.35 +/- 0.02 (sigma = 0.04). Within the measurement uncertainties, the abundance ratios [Rb/Fe], [Pb/Fe] and [Rb/X] for X = Y, Zr, La are constant from star-to-star in each cluster and none of these ratios are correlated with O or Na abundances. While M4 has a higher Rb abundance than M5, the ratios [Rb/X] are similar in both clusters indicating that the nature of the s-products are very similar for each cluster but the gas from which M4's stars formed had a higher concentration of these products.Comment: Accepted for publication in Ap
    corecore