130 research outputs found

    The FCC-ee study: Progress and challenges

    Full text link
    The FCC (Future Circular Collider) study represents a vision for the next large project in high energy physics, comprising an 80-100 km tunnel that can house a future 100 TeV hadron collider. The study also includes a high luminosity e+e- collider operating in the centre-of-mass energy range of 90-350 GeV as a possible intermediate step, the FCC-ee. The FCC-ee aims at definitive electro-weak precision measurements of the Z, W, H and top particles, and search for rare phenomena. Although FCC-ee is based on known technology, the goal performance in luminosity and energy calibration make it quite challenging. During 2014 the study went through an exploration phase. The study has now entered its second year and the aim is to produce a conceptual design report during the next three to four years. We here report on progress since the last IPAC conference.Comment: Poster presented at IPAC15,Richmond, VA, USA, May 201

    Design of beam optics for the Future Circular Collider e+e- -collider rings

    Full text link
    A beam optics scheme has been designed for the Future Circular Collider-e+e- (FCC-ee). The main characteristics of the design are: beam energy 45 to 175 GeV, 100 km circumference with two interaction points (IPs) per ring, horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [1] with local chromaticity correction. The crab-waist scheme is implemented within the local chromaticity correction system without additional sextupoles, by reducing the strength of one of the two sextupoles for vertical chromatic correction at each side of the IP. So-called "tapering" of the magnets is applied, which scales all fields of the magnets according to the local beam energy to compensate for the effect of synchrotron radiation (SR) loss along the ring. An asymmetric layout near the interaction region reduces the critical energy of SR photons on the incoming side of the IP to values below 100 keV, while matching the geometry to the beam line of the FCC proton collider (FCC-hh) [2] as closely as possible. Sufficient transverse/longitudinal dynamic aperture (DA) has been obtained, including major dynamical effects, to assure an adequate beam lifetime in the presence of beamstrahlung and top-up injection. In particular, a momentum acceptance larger than +/-2% has been obtained, which is better than the momentum acceptance of typical collider rings by about a factor of 2. The effects of the detector solenoids including their compensation elements are taken into account as well as synchrotron radiation in all magnets. The optics presented in this paper is a step toward a full conceptual design for the collider. A number of issues have been identified for further study

    Status of the Super-B factory Design

    Full text link
    The SuperB international team continues to optimize the design of an electron-positron collider, which will allow the enhanced study of the origins of flavor physics. The project combines the best features of a linear collider (high single-collision luminosity) and a storage-ring collider (high repetition rate), bringing together all accelerator physics aspects to make a very high luminosity of 1036^{36} cm2^{-2} sec1^{-1}. This asymmetric-energy collider with a polarized electron beam will produce hundreds of millions of B-mesons at the Υ\Upsilon(4S) resonance. The present design is based on extremely low emittance beams colliding at a large Piwinski angle to allow very low βy\beta_y^\star without the need for ultra short bunches. Use of crab-waist sextupoles will enhance the luminosity, suppressing dangerous resonances and allowing for a higher beam-beam parameter. The project has flexible beam parameters, improved dynamic aperture, and spin-rotators in the Low Energy Ring for longitudinal polarization of the electron beam at the Interaction Point. Optimized for best colliding-beam performance, the facility may also provide high-brightness photon beams for synchrotron radiation applications

    Measurement of J/ψγηcJ/\psi\to\gamma\eta_{\rm c} decay rate and ηc\eta_{\rm c} parameters at KEDR

    Full text link
    Using the inclusive photon spectrum based on a data sample collected at the J/ψJ/\psi peak with the KEDR detector at the VEPP-4M e+ee^+e^- collider, we measured the rate of the radiative decay J/ψγηcJ/\psi\to\gamma\eta_{\rm c} as well as ηc\eta_{\rm c} mass and width. Taking into account an asymmetric photon lineshape we obtained Γγηc0=2.98±0.180.33+0.15\Gamma^0_{\gamma\eta_{\rm c}}=2.98\pm0.18 \phantom{|}^{+0.15}_{-0.33} keV, Mηc=2983.5±1.43.6+1.6M_{\eta_{\rm c}} = 2983.5 \pm 1.4 \phantom{|}^{+1.6}_{-3.6} MeV/c2c^2, Γηc=27.2±3.12.6+5.4\Gamma_{\eta_{\rm c}} = 27.2 \pm 3.1 \phantom{|}^{+5.4}_{-2.6} MeV.Comment: 6 pages, 3 figure

    Precise measurement of RudsR_{\text{uds}} and RR between 1.84 and 3.72 GeV at the KEDR detector

    Full text link
    The present work continues a series of the KEDR measurements of the RR value that started in 2010 at the VEPP-4M e+ee^+e^- collider. By combining new data with our previous results in this energy range we measured the values of RudsR_{\text{uds}} and RR at nine center-of-mass energies between 3.08 and 3.72 GeV. The total accuracy is about or better than 2.6%2.6\% at most of energy points with a systematic uncertainty of about 1.9%1.9\%. Together with the previous precise RR measurement at KEDR in the energy range 1.84-3.05 GeV, it constitutes the most detailed high-precision RR measurement near the charmonium production threshold.Comment: arXiv admin note: text overlap with arXiv:1610.02827 and substantial text overlap with arXiv:1510.0266

    Measurement of B(J/psi->eta_c gamma) at KEDR

    Full text link
    We present a study of the inclusive photon spectrum from 6.3 million J/psi decays collected with the KEDR detector at the VEPP-4M e+e- collider. We measure the branching fraction of the radiative decay J/psi -> eta_c gamma, eta_c width and mass. Taking into account an asymmetric photon line shape we obtain: M(eta_c) = (2978.1 +- 1.4 +- 2.0) MeV/c^2, Gamma(eta_c) = (43.5 +- 5.4 +- 15.8) MeV, B(J/psi->eta_c gamma) = (2.59 +- 0.16 +- 0.31)%$.Comment: 6 pages, 1 figure. To be published in the proceedings of the 4th International Workshop on Charm Physics (Charm2010), October 21-24, 2010, IHEP, Beijin
    corecore