345 research outputs found

    The limits of filopodium stability

    Full text link
    Filopodia are long, finger-like membrane tubes supported by cytoskeletal filaments. Their shape is determined by the stiffness of the actin filament bundles found inside them and by the interplay between the surface tension and bending rigidity of the membrane. Although one might expect the Euler buckling instability to limit the length of filopodia, we show through simple energetic considerations that this is in general not the case. By further analyzing the statics of filaments inside membrane tubes, and through computer simulations that capture membrane and filament fluctuations, we show under which conditions filopodia of arbitrary lengths are stable. We discuss several in vitro experiments where this kind of stability has already been observed. Furthermore, we predict that the filaments in long, stable filopodia adopt a helical shape

    Anharmonicity and self-similarity of the free energy landscape of protein G

    Full text link
    The near-native free energy landscape of protein G is investigated through 0.4 microseconds-long atomistic molecular dynamics simulations in explicit solvent. A theoretical and computational framework is used to assess the time-dependence of salient thermodynamical features. While the quasi-harmonic character of the free energy is found to degrade in a few ns, the slow modes display a very mild dependence on the trajectory duration. This property originates from a striking self-similarity of the free energy landscape embodied by the consistency of the principal directions of the local minima, where the system dwells for several ns, and of the virtual jumps connecting them.Comment: revtex, 6 pages, 5 figure

    Modular logic gates: cascading independent logic gates via metal ion signals

    Get PDF
    Cataloged from PDF version of article.Abstract Systematic cascading of molecular logic gates is an important issue to be addressed for advancing research in this field. We have demonstrated that photochemically triggered metal ion signals can be utilized towards that goal. Thus, independent logic gates were shown to work together while keeping their identity in more complex logic designs. Communication through the intermediacy of ion signals is clearly inspired from biological processes modulated by such signals, and implemented here with ion responsive molecules. © 2014 The Royal Society of Chemistry.

    Driving calmodulin protein towards conformational shift by changing ionization states of select residues

    Get PDF
    Proteins are complex systems made up of many conformational sub-states which are mainly determined by the folded structure. External factors such as solvent type, temperature, pH and ionic strength play a very important role in the conformations sampled by proteins. Here we study the conformational multiplicity of calmodulin (CaM) which is a protein that plays an important role in calcium signaling pathways in the eukaryotic cells. CaM can bind to a variety of other proteins or small organic compounds, and mediates different physiological processes by activating various enzymes. Binding of calcium ions and proteins or small organic molecules to CaM induces large conformational changes that are distinct to each interacting partner. In particular, we discuss the effect of pH variation on the conformations of CaM. By using the pKa values of the charged residues as a basis to assign protonation states, the conformational changes induced in CaM by reducing the pH are studied by molecular dynamics simulations. Our current view suggests that at high pH, barrier crossing to the compact form is prevented by repulsive electrostatic interactions between the two lobes. At reduced pH, not only is barrier crossing facilitated by protonation of residues, but also conformations which are on average more compact are attained. The latter are in accordance with the fluorescence resonance energy transfer experiment results of other workers. The key events leading to the conformational change from the open to the compact conformation are (i) formation of a salt bridge between the N-lobe and the linker, stabilizing their relative motions, (ii) bending of the C-lobe towards the N-lobe, leading to a lowering of the interaction energy between the two-lobes, (iii) formation of a hydrophobic patch between the two lobes, further stabilizing the bent conformation by reducing the entropic cost of the compact form, (iv) sharing of a Ca+2 ion between the two lobes

    Near-IR-Triggered, Remote-Controlled Release of Metal Ions: A Novel Strategy for Caged Ions

    Get PDF
    Cataloged from PDF version of article.A ligand incorporating a dithioethenyl moiety is cleaved into fragments which have a lower metal-ion affinity upon irradiation with low-energy red/near-IR light. The cleavage is a result of singlet oxygen generation which occurs on excitation of the photosensitizer modules. The method has many tunable factors that could make it a satisfactory caging strategy for metal ions

    Classical, semiclassical, and quantum investigations of the 4-sphere scattering system

    Full text link
    A genuinely three-dimensional system, viz. the hyperbolic 4-sphere scattering system, is investigated with classical, semiclassical, and quantum mechanical methods at various center-to-center separations of the spheres. The efficiency and scaling properties of the computations are discussed by comparisons to the two-dimensional 3-disk system. While in systems with few degrees of freedom modern quantum calculations are, in general, numerically more efficient than semiclassical methods, this situation can be reversed with increasing dimension of the problem. For the 4-sphere system with large separations between the spheres, we demonstrate the superiority of semiclassical versus quantum calculations, i.e., semiclassical resonances can easily be obtained even in energy regions which are unattainable with the currently available quantum techniques. The 4-sphere system with touching spheres is a challenging problem for both quantum and semiclassical techniques. Here, semiclassical resonances are obtained via harmonic inversion of a cross-correlated periodic orbit signal.Comment: 12 pages, 5 figures, submitted to Phys. Rev.

    Multi-scale modelling of carbon nanotube reinforced crosslinked interfaces

    Get PDF
    In this paper, we study the crosslinking route and interfacial interactions for achieving superior properties in carbon nanotube (CNT)-reinforced epoxy-based nanocomposites by using multi-scale modelling. For that purpose, polymeric epoxy matrices consisting of EPON 862 epoxy and TETA hardener molecules were coarse-grained and simulated using the dissipative particle dynamics (DPD) method. Furthermore, CNTs were coarse-grained as rigid rods and embedded into the uncrosslinked mesoscopic polymer system. Reverse-mapping of the atomistic details onto the coarse-grained models was carried out to allow further simulations at the atomistic scale using molecular dynamics (MD) while keeping the periodicity of the CNTs’ structure. The mechanism of crosslinking was simulated, and both neat and CNT-reinforced thermoset nanocomposites with different degrees of crosslinking were reconstructed. Normal stresses in both tensile and compressive loading directions (up to 0.2% strain) were calculated, and the yield strength (at 0.2% offset) and compressive/elastic modulus in both normal directions are reported, which match well with experimental values. Overall, this paper explores a fast and straightforward procedure to bridge periodic mesoscopic structures, such as CNTs and their nanocomposites, to experimentally tested material properties

    A network model to investigate structural and electrical properties of proteins

    Full text link
    One of the main trend in to date research and development is the miniaturization of electronic devices. In this perspective, integrated nanodevices based on proteins or biomolecules are attracting a major interest. In fact, it has been shown that proteins like bacteriorhodopsin and azurin, manifest electrical properties which are promising for the development of active components in the field of molecular electronics. Here we focus on two relevant kinds of proteins: The bovine rhodopsin, prototype of GPCR protein, and the enzyme acetylcholinesterase (AChE), whose inhibition is one of the most qualified treatments of Alzheimer disease. Both these proteins exert their functioning starting with a conformational change of their native structure. Our guess is that such a change should be accompanied with a detectable variation of their electrical properties. To investigate this conjecture, we present an impedance network model of proteins, able to estimate the different electrical response associated with the different configurations. The model resolution of the electrical response is found able to monitor the structure and the conformational change of the given protein. In this respect, rhodopsin exhibits a better differential response than AChE. This result gives room to different interpretations of the degree of conformational change and in particular supports a recent hypothesis on the existence of a mixed state already in the native configuration of the protein.Comment: 25 pages, 12 figure

    "Clumpiness" Mixing in Complex Networks

    Get PDF
    Three measures of clumpiness of complex networks are introduced. The measures quantify how most central nodes of a network are clumped together. The assortativity coefficient defined in a previous study measures a similar characteristic, but accounts only for the clumpiness of the central nodes that are directly connected to each other. The clumpiness coefficient defined in the present paper also takes into account the cases where central nodes are separated by a few links. The definition is based on the node degrees and the distances between pairs of nodes. The clumpiness coefficient together with the assortativity coefficient can define four classes of network. Numerical calculations demonstrate that the classification scheme successfully categorizes 30 real-world networks into the four classes: clumped assortative, clumped disassortative, loose assortative and loose disassortative networks. The clumpiness coefficient also differentiates the Erdos-Renyi model from the Barabasi-Albert model, which the assortativity coefficient could not differentiate. In addition, the bounds of the clumpiness coefficient as well as the relationships between the three measures of clumpiness are discussed.Comment: 47 pages, 11 figure

    "Clumpiness" Mixing in Complex Networks

    Get PDF
    Three measures of clumpiness of complex networks are introduced. The measures quantify how most central nodes of a network are clumped together. The assortativity coefficient defined in a previous study measures a similar characteristic, but accounts only for the clumpiness of the central nodes that are directly connected to each other. The clumpiness coefficient defined in the present paper also takes into account the cases where central nodes are separated by a few links. The definition is based on the node degrees and the distances between pairs of nodes. The clumpiness coefficient together with the assortativity coefficient can define four classes of network. Numerical calculations demonstrate that the classification scheme successfully categorizes 30 real-world networks into the four classes: clumped assortative, clumped disassortative, loose assortative and loose disassortative networks. The clumpiness coefficient also differentiates the Erdos-Renyi model from the Barabasi-Albert model, which the assortativity coefficient could not differentiate. In addition, the bounds of the clumpiness coefficient as well as the relationships between the three measures of clumpiness are discussed.Comment: 47 pages, 11 figure
    corecore