13 research outputs found
The use of iec 61400-25 standard to integrate wind power plants into the control of power system stability
The main purpose of the standard IEC 61400-25 is the unification of communication systems in wind power plants, both for internal exchange of information and for remote control. Most of the current control and monitoring systems used in wind farms are vendor-specific and the protocols and data provided by these systems are therefore dependent on their manufacturer. This paper explains the main features of IEC 61400-25 standard, and it also highlights its advantages for the integration of wind farms into the electric system.Peer reviewe
Thermal wave scattering by two overlapping and parallel cylinders
In this paper an analytical solution of the temperature of an opaque material containing two overlapping and parallel subsurface cylinders, illuminated by a modulated light beam, is presented. The method is based on the expansion of plane and cylindrical thermal waves in series of Bessel and Hankel functions. This model is addressed to the study of heat propagation in composite materials with interconnection between inclusions, as is the case of inverse opals and fiber reinforced composites. Measurements on calibrated samples using lock-in infrared thermography confirm the validity of the model
Size-Induced Chemical and Magnetic Ordering in Individual Fe–Au Nanoparticles
Formation of chemically ordered compounds of Fe and Au is inhibited in bulk materials due to their limited mutual solubility. However, here we report the formation of chemically ordered L12-type Fe3Au and FeAu3 compounds in Fe–Au sub-10 nm nanoparticles, suggesting that they are equilib-rium structures in size-constrained systems. The stability of these L12-ordered Fe3Au and FeAu3 com-pounds along with a previously discovered L10-ordered FeAu has been explained by a size-dependent equilibrium thermodynamic model. Furthermore, the spin ordering of these three com-pounds has been computed using ab initio first-principle calculations. All ordered compounds exhibit a substantial magnetization at room temperature. The Fe3Au had a high saturation magnetization of about 143.6 emu/g with a ferromagnetic spin structure. The FeAu3 nanoparticles displayed a low saturation magnetization of about 11 emu/g. This suggests an antiferromagnetic spin structure, with the net magnetization arising from uncompensated surface spins. First-principle calculations using the Vienna ab initio simulation package (VASP) indicate that ferromagnetic ordering is energetically most stable in Fe3Au, while antiferromagnetic order is predicted in FeAu and FeAu3, consistent with the experimental results