32,265 research outputs found

    Conditions in the early solar system, as inferred from meteorites

    Get PDF
    Inferring origin of solar system from studying properties of meteorite

    Statistical theory of relaxation of high energy electrons in quantum Hall edge states

    Full text link
    We investigate theoretically the energy exchange between electrons of two co-propagating, out-of-equilibrium edge states with opposite spin polarization in the integer quantum Hall regime. A quantum dot tunnel-coupled to one of the edge states locally injects electrons at high energy. Thereby a narrow peak in the energy distribution is created at high energy above the Fermi level. A second downstream quantum dot performs an energy resolved measurement of the electronic distribution function. By varying the distance between the two dots, we are able to follow every step of the energy exchange and relaxation between the edge states - even analytically under certain conditions. In the absence of translational invariance along the edge, e.g. due to the presence of disorder, energy can be exchanged by non-momentum conserving two-particle collisions. For weakly broken translational invariance, we show that the relaxation is described by coupled Fokker-Planck equations. From these we find that relaxation of the injected electrons can be understood statistically as a generalized drift-diffusion process in energy space for which we determine the drift-velocity and the dynamical diffusion parameter. Finally, we provide a physically appealing picture in terms of individual edge state heating as a result of the relaxation of the injected electrons.Comment: 13 pages plus 6 appendices, 8 figures. Supplemental Material can be found on http://quantumtheory.physik.unibas.ch/people/nigg/supp_mat.htm

    Primal and dual active-set methods for convex quadratic programming

    Full text link
    Computational methods are proposed for solving a convex quadratic program (QP). Active-set methods are defined for a particular primal and dual formulation of a QP with general equality constraints and simple lower bounds on the variables. In the first part of the paper, two methods are proposed, one primal and one dual. These methods generate a sequence of iterates that are feasible with respect to the equality constraints associated with the optimality conditions of the primal-dual form. The primal method maintains feasibility of the primal inequalities while driving the infeasibilities of the dual inequalities to zero. The dual method maintains feasibility of the dual inequalities while moving to satisfy the primal inequalities. In each of these methods, the search directions satisfy a KKT system of equations formed from Hessian and constraint components associated with an appropriate column basis. The composition of the basis is specified by an active-set strategy that guarantees the nonsingularity of each set of KKT equations. Each of the proposed methods is a conventional active-set method in the sense that an initial primal- or dual-feasible point is required. In the second part of the paper, it is shown how the quadratic program may be solved as a coupled pair of primal and dual quadratic programs created from the original by simultaneously shifting the simple-bound constraints and adding a penalty term to the objective function. Any conventional column basis may be made optimal for such a primal-dual pair of shifted-penalized problems. The shifts are then updated using the solution of either the primal or the dual shifted problem. An obvious application of this approach is to solve a shifted dual QP to define an initial feasible point for the primal (or vice versa). The computational performance of each of the proposed methods is evaluated on a set of convex problems.Comment: The final publication is available at Springer via http://dx.doi.org/10.1007/s10107-015-0966-

    Interaction induced edge channel equilibration

    Full text link
    The electronic distribution functions of two Coulomb coupled chiral edge states forming a quasi-1D system with broken translation invariance are found using the equation of motion approach. We find that relaxation and thereby energy exchange between the two edge states is determined by the shot noise of the edge states generated at a quantum point contact (QPC). In close vicinity to the QPC, we derive analytic expressions for the distribution functions. We further give an iterative procedure with which we can compute numerically the distribution functions arbitrarily far away from the QPC. Our results are compared with recent experiments of Le Sueur et al..Comment: 10 pages, 7 figures, includes 5 pages of supplementary informatio

    Enhancing quantum transduction via long-range waveguide mediated interactions between quantum emitters

    Full text link
    Efficient transduction of electromagnetic signals between different frequency scales is an essential ingredient for modern communication technologies as well as for the emergent field of quantum information processing. Recent advances in waveguide photonics have enabled a breakthrough in light-matter coupling, where individual two-level emitters are strongly coupled to individual photons. Here we propose a scheme which exploits this coupling to boost the performance of transducers between low-frequency signals and optical fields operating at the level of individual photons. Specifically, we demonstrate how to engineer the interaction between quantum dots in waveguides to enable efficient transduction of electric fields coupled to quantum dots. Owing to the scalability and integrability of the solid-state platform, our transducer can potentially become a key building block of a quantum internet node. To demonstrate this, we show how it can be used as a coherent quantum interface between optical photons and a two-level system like a superconducting qubit.Comment: The maintext has 6 pages, two column and 4 figure

    Neutrino fluence after r-process freeze-out and abundances of Te isotopes in presolar diamonds

    Get PDF
    Using the data of Richter et al. (1998) on Te isotopes in diamond grains from a meteorite, we derive bounds on the neutrino fluence and the decay timescale of the neutrino flux relevant for the supernova r-process. Our new bound on the neutrino fluence F after freeze-out of the r-process peak at mass number A = 130 is more stringent than the previous bound F < 0.045 (in units of 10**37 erg/cm**2) of Qian et al. (1997) and Haxton et al. (1997) if the neutrino flux decays on a timescale tau > 0.65 s. In particular, it requires that a fluence of F = 0.031 be provided by a neutrino flux with tau < 0.84 s. Such a fluence may be responsible for the production of the solar r-process abundances at A = 124-126 (Qian et al. 1997; Haxton et al. 1997). Our results are based on the assumption that only the stable nuclei implanted into the diamonds are retained while the radioactive ones are lost from the diamonds upon decay after implantation (Ott 1996). We consider that the nanodiamonds are condensed in an environment with C/O > 1 in the expanding supernova debris or from the exterior H envelope. The implantation of nuclei would have occurred 10**4-10**6 s after r-process freeze-out. This time interval may be marginally sufficient to permit adequate cooling upon expansion for the formation of diamond grains. The mechanisms of preferential retention/loss of the implanted nuclei are not well understood.Comment: AASTeX, 11 pages, 3 Postscript figure

    Circularizing Planet Nine through dynamical friction with an extended, cold planetesimal belt

    Full text link
    Unexpected clustering in the orbital elements of minor bodies beyond the Kuiper belt has led to speculations that our solar system actually hosts nine planets, the eight established plus a hypothetical "Planet Nine". Several recent studies have shown that a planet with a mass of about 10 Earth masses on a distant eccentric orbit with perihelion far beyond the Kuiper belt could create and maintain this clustering. The evolutionary path resulting in an orbit such as the one suggested for Planet Nine is nevertheless not easily explained. Here we investigate whether a planet scattered away from the giant-planet region could be lifted to an orbit similar to the one suggested for Planet Nine through dynamical friction with a cold, distant planetesimal belt. Recent simulations of planetesimal formation via the streaming instability suggest that planetesimals can readily form beyond 100au. We explore this circularisation by dynamical friction with a set of numerical simulations. We find that a planet that is scattered from the region close to Neptune onto an eccentric orbit has a 20-30% chance of obtaining an orbit similar to that of Planet Nine after 4.6Gyr. Our simulations also result in strong or partial clustering of the planetesimals; however, whether or not this clustering is observable depends on the location of the inner edge of the planetesimal belt. If the inner edge is located at 200au the degree of clustering amongst observable objects is significant.Comment: Accepted to MNRA

    Chemical fractionations in meteorites, 4. Abundances of fourteen trace elements in L-chondrites - Implications for cosmothermometry

    Get PDF
    Trace element abundances in L-chondrites determined by neutron activation analysis, and implications cosmothermometr
    corecore