294 research outputs found

    The shock-acoustic waves generated by earthquakes

    Get PDF
    We investigate the form and dynamics of shock-acoustic waves generated by earthquakes. We use the method for detecting and locating the sources of ionospheric impulsive disturbances, based on using data from a global network of receivers of the GPS navigation system and requiring no a priori information about the place and time of associated effects. The practical implementation of the method is illustrated by a case study of earthquake effects in Turkey (August 17, and November 12, 1999), in Southern Sumatera (June 4, 2000), and off the coast of Central America (January 13, 2001). It was found that in all instances the time period of the ionospheric response is 180-390 s, and the amplitude exceeds by a factor of two as a minimum the standard deviation of background fluctuations in total electron content in this range of periods under quiet and moderate geomagnetic conditions. The elevation of the wave vector varies through a range of 20-44 degree, and the phase velocity (1100-1300 m/s) approaches the sound velocity at the heights of the ionospheric F-region maximum. The calculated (by neglecting refraction corrections) location of the source roughly corresponds to the earthquake epicenter. Our data are consistent with the present views that shock-acoustic waves are caused by a piston-like movement of the Earth surface in the zone of an earthquake epicenter.Comment: EmTeX-386, 30 pages, 4 figures, 3 tabl

    Geomagnetic control of the spectrum of traveling ionospheric disturbances based on data from a global GPS network

    Get PDF
    In this paper an attempt is made to verify the hypothesis on the role of geomagnetic disturbances as a factor determining the intensity of traveling ionospheric disturbances (TIDs). To improve the statistical validity of the data, we have used the based on the new GLOBDET technology method involving a global spatial averaging of disturbance spectra of the total electron content (TEC). To characterize the TID intensity quantitatively, we suggest that a new global index of the degree of disturbance should be used, which is equal to the mean value of the rms variations in TEC within the selected range of spectral periods (of 20-60 min in the present case). It was found that power spectra of daytime TEC variations in the range of 20-60 min periods under quiet conditions have a power-law form, with the slope index k = -2.5. With an increase of the level of magnetic disturbance, there is an increase in total intensity of TIDs, with a concurrent kink of the spectrum caused by an increase in oscillation intensity in the range of 20-60 min. It was found that an increase in the level of geomagnetic activity is accompanied by an increase in total intensity of TEC; however, it correlates not with the absolute level of Dst, but with the value of the time derivative of Dst (a maximum correlation coefficient reaches -0.94). The delay of the TID response of the order of 2 hours is consistent with the view that TIDs are generated in auroral regions, and propagate equatorward with the velocity of about 300-400 m/s.Comment: LaTeX2.09, 16 pages, 5 figures, 1 table, egs.cls, egs.bst (the style files

    Detectability of non-differentiable generalized synchrony

    Full text link
    Generalized synchronization of chaos is a type of cooperative behavior in directionally-coupled oscillators that is characterized by existence of stable and persistent functional dependence of response trajectories from the chaotic trajectory of driving oscillator. In many practical cases this function is non-differentiable and has a very complex shape. The generalized synchrony in such cases seems to be undetectable, and only the cases, in which a differentiable synchronization function exists, are considered to make sense in practice. We show that this viewpoint is not always correct and the non-differentiable generalized synchrony can be revealed in many practical cases. Conditions for detection of generalized synchrony are derived analytically, and illustrated numerically with a simple example of non-differentiable generalized synchronization.Comment: 8 pages, 8 figures, submitted to PR
    corecore