3,918 research outputs found

    Quantum Structures: An Attempt to Explain the Origin of their Appearance in Nature

    Get PDF
    We explain the quantum structure as due to the presence of two effects, (a) a real change of state of the entity under influence of the measurement and, (b) a lack of knowledge about a deeper deterministic reality of the measurement process. We present a quantum machine, where we can illustrate in a simple way how the quantum structure arises as a consequence of the two mentioned effects. We introduce a parameter epsilon that measures the size of the lack of knowledge on the measurement process, and by varying this parameter, we describe a continuous evolution from a quantum structure (maximal lack of knowledge) to a classical structure (zero lack of knowledge). We show that for intermediate values of epsilon we find a new type of structure, that is neither quantum nor classical. We apply the model that we have introduced to situations of lack of knowledge about the measurement process appearing in other regions of reality. More specifically we investigate the quantum-like structures that appear in the situation of psychological decision processes, where the subject is influenced during the testing, and forms some of his opinions during the testing process. Our conclusion is that in the light of this explanation, the quantum probabilities are epistemic and not ontological, which means that quantum mechanics is compatible with a determinism of the whole.Comment: 22 pages, 8 figure

    Modeling Concept Combinations in a Quantum-theoretic Framework

    Full text link
    We present modeling for conceptual combinations which uses the mathematical formalism of quantum theory. Our model faithfully describes a large amount of experimental data collected by different scholars on concept conjunctions and disjunctions. Furthermore, our approach sheds a new light on long standing drawbacks connected with vagueness, or fuzziness, of concepts, and puts forward a completely novel possible solution to the 'combination problem' in concept theory. Additionally, we introduce an explanation for the occurrence of quantum structures in the mechanisms and dynamics of concepts and, more generally, in cognitive and decision processes, according to which human thought is a well structured superposition of a 'logical thought' and a 'conceptual thought', and the latter usually prevails over the former, at variance with some widespread beliefsComment: 5 pages. arXiv admin note: substantial text overlap with arXiv:1311.605

    Interpreting Quantum Particles as Conceptual Entities

    Full text link
    We elaborate an interpretation of quantum physics founded on the hypothesis that quantum particles are conceptual entities playing the role of communication vehicles between material entities composed of ordinary matter which function as memory structures for these quantum particles. We show in which way this new interpretation gives rise to a natural explanation for the quantum effects of interference and entanglement by analyzing how interference and entanglement emerge for the case of human concepts. We put forward a scheme to derive a metric based on similarity as a predecessor for the structure of 'space, time, momentum, energy' and 'quantum particles interacting with ordinary matter' underlying standard quantum physics, within the new interpretation, and making use of aspects of traditional quantum axiomatics. More specifically, we analyze how the effect of non-locality arises as a consequence of the confrontation of such an emerging metric type of structure and the remaining presence of the basic conceptual structure on the fundamental level, with the potential of being revealed in specific situations.Comment: 19 pages, 1 figur

    Using simple elastic bands to explain quantum mechanics: a conceptual review of two of Aert's machine-models

    Full text link
    From the beginning of his research, the Belgian physicist Diederik Aerts has shown great creativity in inventing a number of concrete machine-models that have played an important role in the development of general mathematical and conceptual formalisms for the description of the physical reality. These models can also be used to demystify much of the strangeness in the behavior of quantum entities, by allowing to have a peek at what's going on - in structural terms - behind the "quantum scenes," during a measurement. In this author's view, the importance of these machine-models, and of the approaches they have originated, have been so far seriously underappreciated by the physics community, despite their success in clarifying many challenges of quantum physics. To fill this gap, and encourage a greater number of researchers to take cognizance of the important work of so-called Geneva-Brussels school, we describe and analyze in this paper two of Aerts' historical machine-models, whose operations are based on simple breakable elastic bands. The first one, called the spin quantum-machine, is able to replicate the quantum probabilities associated with the spin measurement of a spin-1/2 entity. The second one, called the \emph{connected vessels of water model} (of which we shall present here an alternative version based on elastics) is able to violate Bell's inequality, as coincidence measurements on entangled states can do.Comment: 15 pages, 5 figure

    What is Quantum? Unifying Its Micro-Physical and Structural Appearance

    Full text link
    We can recognize two modes in which 'quantum appears' in macro domains: (i) a 'micro-physical appearance', where quantum laws are assumed to be universal and they are transferred from the micro to the macro level if suitable 'quantum coherence' conditions (e.g., very low temperatures) are realized, (ii) a 'structural appearance', where no hypothesis is made on the validity of quantum laws at a micro level, while genuine quantum aspects are detected at a structural-modeling level. In this paper, we inquire into the connections between the two appearances. We put forward the explanatory hypothesis that, 'the appearance of quantum in both cases' is due to 'the existence of a specific form of organisation, which has the capacity to cope with random perturbations that would destroy this organisation when not coped with'. We analyse how 'organisation of matter', 'organisation of life', and 'organisation of culture', play this role each in their specific domain of application, point out the importance of evolution in this respect, and put forward how our analysis sheds new light on 'what quantum is'.Comment: 10 page

    Quantum Particles as Conceptual Entities: A Possible Explanatory Framework for Quantum Theory

    Full text link
    We put forward a possible new interpretation and explanatory framework for quantum theory. The basic hypothesis underlying this new framework is that quantum particles are conceptual entities. More concretely, we propose that quantum particles interact with ordinary matter, nuclei, atoms, molecules, macroscopic material entities, measuring apparatuses, ..., in a similar way to how human concepts interact with memory structures, human minds or artificial memories. We analyze the most characteristic aspects of quantum theory, i.e. entanglement and non-locality, interference and superposition, identity and individuality in the light of this new interpretation, and we put forward a specific explanation and understanding of these aspects. The basic hypothesis of our framework gives rise in a natural way to a Heisenberg uncertainty principle which introduces an understanding of the general situation of 'the one and the many' in quantum physics. A specific view on macro and micro different from the common one follows from the basic hypothesis and leads to an analysis of Schrodinger's Cat paradox and the measurement problem different from the existing ones. We reflect about the influence of this new quantum interpretation and explanatory framework on the global nature and evolutionary aspects of the world and human worldviews, and point out potential explanations for specific situations, such as the generation problem in particle physics, the confinement of quarks and the existence of dark matter.Comment: 45 pages, 10 figure

    Quantum Experimental Data in Psychology and Economics

    Full text link
    We prove a theorem which shows that a collection of experimental data of probabilistic weights related to decisions with respect to situations and their disjunction cannot be modeled within a classical probabilistic weight structure in case the experimental data contain the effect referred to as the 'disjunction effect' in psychology. We identify different experimental situations in psychology, more specifically in concept theory and in decision theory, and in economics (namely situations where Savage's Sure-Thing Principle is violated) where the disjunction effect appears and we point out the common nature of the effect. We analyze how our theorem constitutes a no-go theorem for classical probabilistic weight structures for common experimental data when the disjunction effect is affecting the values of these data. We put forward a simple geometric criterion that reveals the non classicality of the considered probabilistic weights and we illustrate our geometrical criterion by means of experimentally measured membership weights of items with respect to pairs of concepts and their disjunctions. The violation of the classical probabilistic weight structure is very analogous to the violation of the well-known Bell inequalities studied in quantum mechanics. The no-go theorem we prove in the present article with respect to the collection of experimental data we consider has a status analogous to the well known no-go theorems for hidden variable theories in quantum mechanics with respect to experimental data obtained in quantum laboratories. For this reason our analysis puts forward a strong argument in favor of the validity of using a quantum formalism for modeling the considered psychological experimental data as considered in this paper.Comment: 15 pages, 4 figure
    • …
    corecore