2,384 research outputs found
Coulomb tunneling for fusion reactions in dense matter: Path integral Monte Carlo versus mean field
We compare Path Integral Monte Carlo calculations by Militzer and Pollock
(Phys. Rev. B 71, 134303, 2005) of Coulomb tunneling in nuclear reactions in
dense matter to semiclassical calculations assuming WKB Coulomb barrier
penetration through the radial mean-field potential. We find a very good
agreement of two approaches at temperatures higher than ~1/5 of the ion plasma
temperature. We obtain a simple parameterization of the mean field potential
and of the respective reaction rates. We analyze Gamow-peak energies of
reacting ions in various reaction regimes and discuss theoretical uncertainties
of nuclear reaction rates taking carbon burning in dense stellar matter as an
example.Comment: 13 pages, 7 figures, to appear in Phys. Rev.
Optical control of electron spin coherence in CdTe/(Cd,Mg)Te quantum wells
Optical control of the spin coherence of quantum well electrons by short
laser pulses with circular or linear polarization is studied experimentally and
theoretically. For that purpose the coherent electron spin dynamics in a
n-doped CdTe/(Cd,Mg)Te quantum well structure was measured by time-resolved
pump-probe Kerr rotation, using resonant excitation of the negatively charged
exciton (trion) state. The amplitude and phase shifts of the electron spin beat
signal in an external magnetic field, that are induced by laser control pulses,
depend on the pump-control delay and polarization of the control relative to
the pump pulse. Additive and non-additive contributions to pump-induced signal
due to the control are isolated experimentally. These contributions can be well
described in the framework of a two-level model for the optical excitation of
the resident electron to the trion.Comment: 15 pages, 18 figure
Spinning down newborn neutron stars: nonlinear development of the r-mode instability
We model the nonlinear saturation of the r-mode instability via three-mode
couplings and the effects of the instability on the spin evolution of young
neutron stars. We include one mode triplet consisting of the r-mode and two
near resonant inertial modes that couple to it. We find that the spectrum of
evolutions is more diverse than previously thought. The evolution of the star
is dynamic and initially dominated by fast neutrino cooling. Nonlinear effects
become important when the r-mode amplitude grows above its first parametric
instability threshold. The balance between neutrino cooling and viscous heating
plays an important role in the evolution. Depending on the initial r-mode
amplitude, and on the strength of the viscosity and of the cooling this balance
can occur at different temperatures. If thermal equilibrium occurs on the
r-mode stability curve, where gravitational driving equals viscous damping, the
evolution may be adequately described by a one-mode model. Otherwise, nonlinear
effects are important and lead to various more complicated scenarios. Once
thermal balance occurs, the star spins-down oscillating between thermal
equilibrium states until the instability is no longer active. For lower
viscosity we observe runaway behavior in which the r-mode amplitude passes
several parametric instability thresholds. In this case more modes need to be
included to model the evolution accurately. In the most optimistic case, we
find that gravitational radiation from the r-mode instability in a very young,
fast spinning neutron star within about 1 Mpc of Earth may be detectable by
advanced LIGO for years, and perhaps decades, after formation. Details
regarding the amplitude and duration of the emission depend on the internal
dissipation of the modes of the star, which would be probed by such detections.Comment: 23 pages, 13 figures, 1 table. Submitted to Phys. Rev. D.
Detectability discussion expanded. Includes referee inpu
Reducing Interconnect Cost in NoC through Serialized Asynchronous Links
This work investigates the application of serialization as a means of reducing the number of wires in NoC combined with asynchronous links in order to simplify the clocking of the link. Throughput is reduced but savings in routing area and reduction in power could make this attractiv
Longitudinal and transversal spin dynamics of donor-bound electrons in fluorine-doped ZnSe: spin inertia versus Hanle effect
The spin dynamics of the strongly localized, donor-bound electrons in
fluorine-doped ZnSe epilayers is studied by pump-probe Kerr rotation
techniques. A method exploiting the spin inertia is developed and used to
measure the longitudinal spin relaxation time, , in a wide range of
magnetic fields, temperatures, and pump densities. The time of the
donor-bound electron spin of about 1.6 s remains nearly constant for
external magnetic fields varied from zero up to 2.5 T (Faraday geometry) and in
a temperature range K. The inhomogeneous spin dephasing time,
ns, is measured using the resonant spin amplification and Hanle
effects under pulsed and steady-state pumping, respectively. These findings
impose severe restrictions on possible spin relaxation mechanisms.Comment: 10 pages, 7 figure
Cooling of Akmal-Pandharipande-Ravenhall neutron star models
We study the cooling of superfluid neutron stars whose cores consist of
nucleon matter with the Akmal-Pandharipande-Ravenhall equation of state. This
equation of state opens the powerful direct Urca process of neutrino emission
in the interior of most massive neutron stars. Extending our previous studies
(Gusakov et al. 2004a, Kaminker et al. 2005), we employ phenomenological
density-dependent critical temperatures T_{cp}(\rho) of strong singlet-state
proton pairing (with the maximum T_{cp}^{max} \sim 7e9 K in the outer stellar
core) and T_{cnt}(\rho) of moderate triplet-state neutron pairing (with the
maximum T_{cnt}^{max} \sim 6e8 K in the inner core). Choosing properly the
position of T_{cnt}^{max} we can obtain a representative class of massive
neutron stars whose cooling is intermediate between the cooling enhanced by the
neutrino emission due to Cooper pairing of neutrons in the absence of the
direct Urca process and the very fast cooling provided by the direct Urca
process non-suppressed by superfluidity.Comment: 9 pages, 6 figures; accepted for publication in MNRA
- …