144 research outputs found

    The Stem Cell Phenotype of Aggressive Breast Cancer Cells

    Get PDF
    Aggressive cancer cells are characterized by their capacity to proliferate indefinitely and to propagate a heterogeneous tumor comprised of subpopulations with varying degrees of metastatic propensity and drug resistance properties. Particularly daunting is the challenge we face in the field of oncology of effectively targeting heterogeneous tumor cells expressing a variety of markers, especially those associated with a stem cell phenotype. This dilemma is especially relevant in breast cancer, where therapy is based on traditional classification schemes, including histological criteria, differentiation status, and classical receptor markers. However, not all patients respond in a similar manner to standard-of-care therapy, thereby necessitating the need to identify and evaluate novel biomarkers associated with the difficult-to-target stem cell phenotype and drug resistance. Findings related to the convergence of embryonic and tumorigenic signaling pathways have identified the embryonic morphogen Nodal as a promising new oncofetal target that is reactivated only in aggressive cancers, but not in normal tissues. The work presented in this paper confirms previous studies demonstrating the importance of Nodal as a cancer stem cell molecule associated with aggressive breast cancer, and advances the field by providing new findings showing that Nodal is not targeted by standard-of-care therapy in breast cancer patients. Most noteworthy is the linkage found between Nodal expression and the drug resistance marker ATP-binding cassette member 1 (ABCA1), which may provide new insights into developing combinatorial approaches to overcome drug resistance and disease recurrence

    The Stem Cell Phenotype of Aggressive Breast Cancer Cells

    Get PDF
    Aggressive cancer cells are characterized by their capacity to proliferate indefinitely and to propagate a heterogeneous tumor comprised of subpopulations with varying degrees of metastatic propensity and drug resistance properties. Particularly daunting is the challenge we face in the field of oncology of effectively targeting heterogeneous tumor cells expressing a variety of markers, especially those associated with a stem cell phenotype. This dilemma is especially relevant in breast cancer, where therapy is based on traditional classification schemes, including histological criteria, differentiation status, and classical receptor markers. However, not all patients respond in a similar manner to standard-of-care therapy, thereby necessitating the need to identify and evaluate novel biomarkers associated with the difficult-to-target stem cell phenotype and drug resistance. Findings related to the convergence of embryonic and tumorigenic signaling pathways have identified the embryonic morphogen Nodal as a promising new oncofetal target that is reactivated only in aggressive cancers, but not in normal tissues. The work presented in this paper confirms previous studies demonstrating the importance of Nodal as a cancer stem cell molecule associated with aggressive breast cancer, and advances the field by providing new findings showing that Nodal is not targeted by standard-of-care therapy in breast cancer patients. Most noteworthy is the linkage found between Nodal expression and the drug resistance marker ATP-binding cassette member 1 (ABCA1), which may provide new insights into developing combinatorial approaches to overcome drug resistance and disease recurrence

    Vasculogenic mimicry in small cell lung cancer.

    Get PDF
    Small cell lung cancer (SCLC) is characterized by prevalent circulating tumour cells (CTCs), early metastasis and poor prognosis. We show that SCLC patients (37/38) have rare CTC subpopulations co-expressing vascular endothelial-cadherin (VE-cadherin) and cytokeratins consistent with vasculogenic mimicry (VM), a process whereby tumour cells form 'endothelial-like' vessels. Single-cell genomic analysis reveals characteristic SCLC genomic changes in both VE-cadherin-positive and -negative CTCs. Higher levels of VM are associated with worse overall survival in 41 limited-stage patients' biopsies (P<0.025). VM vessels are also observed in 9/10 CTC patient-derived explants (CDX), where molecular analysis of fractionated VE-cadherin-positive cells uncovered copy-number alterations and mutated TP53, confirming human tumour origin. VE-cadherin is required for VM in NCI-H446 SCLC xenografts, where VM decreases tumour latency and, despite increased cisplatin intra-tumour delivery, decreases cisplatin efficacy. The functional significance of VM in SCLC suggests VM regulation may provide new targets for therapeutic intervention

    Tumour vascularization: sprouting angiogenesis and beyond

    Get PDF
    Tumour angiogenesis is a fast growing domain in tumour biology. Many growth factors and mechanisms have been unravelled. For almost 30 years, the sprouting of new vessels out of existing ones was considered as an exclusive way of tumour vascularisation. However, over the last years several additional mechanisms have been identified. With the discovery of the contribution of intussusceptive angiogenesis, recruitment of endothelial progenitor cells, vessel co-option, vasculogenic mimicry and lymphangiogenesis to tumour growth, anti-tumour targeting strategies will be more complex than initially thought. This review highlights these processes and intervention as a potential application in cancer therapy. It is concluded that future anti-vascular therapies might be most beneficial when based on multimodal anti-angiogenic, anti-vasculogenic mimicry and anti-lymphangiogenic strategies

    Zinc-Chelation Contributes to the Anti-Angiogenic Effect of Ellagic Acid on Inhibiting MMP-2 Activity, Cell Migration and Tube Formation

    Get PDF
    Ellagic acid (EA), a dietary polyphenolic compound, has been demonstrated to exert anti-angiogenic effect but the detailed mechanism is not yet fully understood. The aim of this study was to investigate whether the zinc chelating activity of EA contributed to its anti-angiogenic effect.The matrix metalloproteinases-2 (MMP-2) activity, a zinc-required reaction, was directly inhibited by EA as examined by gelatin zymography, which was reversed dose-dependently by adding zinc chloride. In addition, EA was demonstrated to inhibit the secretion of MMP-2 from human umbilical vein endothelial cells (HUVECs) as analyzed by Western blot method, which was also reversed by the addition of zinc chloride. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK), known to down-regulate the MMP-2 activity, was induced by EA at both the mRNA and protein levels which was correlated well with the inhibition of MMP-2 activity. Interestingly, zinc chloride could also abolish the increase of EA-induced RECK expression. The anti-angiogenic effect of EA was further confirmed to inhibit matrix-induced tube formation of endothelial cells. The migration of endothelial cells as analyzed by transwell filter assay was suppressed markedly by EA dose-dependently as well. Zinc chloride could reverse these two effects of EA also in a dose-dependent manner. Since magnesium chloride or calcium chloride could not reverse the inhibitory effect of EA, zinc was found to be involved in tube formation and migration of vascular endothelial cells.Together these results demonstrated that the zinc chelation of EA is involved in its anti-angiogenic effects by inhibiting MMP-2 activity, tube formation and cell migration of vascular endothelial cells. The role of zinc was confirmed to be important in the process of angiogenesis

    Retinoic Acid Mediates Regulation of Network Formation by COUP-TFII and VE-Cadherin Expression by TGFβ Receptor Kinase in Breast Cancer Cells

    Get PDF
    Tumor development, growth, and metastasis depend on the provision of an adequate vascular supply. This can be due to regulated angiogenesis, recruitment of circulating endothelial progenitors, and/or vascular transdifferentiation. Our previous studies showed that retinoic acid (RA) treatment converts a subset of breast cancer cells into cells with significant endothelial genotypic and phenotypic elements including marked induction of VE-cadherin, which was responsible for some but not all morphological changes. The present study demonstrates that of the endothelial-related genes induced by RA treatment, only a few were affected by knockdown of VE-cadherin, ruling it out as a regulator of the RA-induced endothelial genotypic switch. In contrast, knockdown of the RA-induced gene COUP-TFII prevented the formation of networks in Matrigel but had no effect on VE-cadherin induction or cell fusion. Two pan-kinase inhibitors markedly blocked RA-induced VE-cadherin expression and cell fusion. However, RA treatment resulted in a marked and broad reduction in tyrosine kinase activity. Several genes in the TGFβ signaling pathway were induced by RA, and specific inhibition of the TGFβ type I receptor blocked both RA-induced VE-cadherin expression and cell fusion. Together these data indicate a role for the TGFβ pathway and COUP-TFII in mediating the endothelial transdifferentiating properties of RA

    Insights into pathogenic events of HIV-associated Kaposi sarcoma and immune reconstitution syndrome related Kaposi sarcoma

    Get PDF
    A decrease in the incidence of human immune deficiency virus-associated Kaposi sarcoma (HIV-KS) and regression of some established HIV-KS lesions is evident after the introduction of highly active anti-retroviral treatment (HAART), and is attributed to generalized immune restoration, to the reconstitution of human herpesvirus (HHV)-8 specific cellular immune responses, and to the decrease in HIV Tat protein and HHV-8 loads following HAART. However, a small subset of HIV-seropositive subjects with a low CD4+ T cell count at the time of introduction of HAART, may develop HIV-KS as immune reconstitution inflammatory syndrome (IRIS) within 8 weeks thereafter

    Microenvironment alters epigenetic and gene expression profiles in Swarm rat chondrosarcoma tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chondrosarcomas are malignant cartilage tumors that do not respond to traditional chemotherapy or radiation. The 5-year survival rate of histologic grade III chondrosarcoma is less than 30%. An animal model of chondrosarcoma has been established - namely, the Swarm Rat Chondrosarcoma (SRC) - and shown to resemble the human disease. Previous studies with this model revealed that tumor microenvironment could significantly influence chondrosarcoma malignancy.</p> <p>Methods</p> <p>To examine the effect of the microenvironment, SRC tumors were initiated at different transplantation sites. Pyrosequencing assays were utilized to assess the DNA methylation of the tumors, and SAGE libraries were constructed and sequenced to determine the gene expression profiles of the tumors. Based on the gene expression analysis, subsequent functional assays were designed to determine the relevancy of the specific genes in the development and progression of the SRC.</p> <p>Results</p> <p>The site of transplantation had a significant impact on the epigenetic and gene expression profiles of SRC tumors. Our analyses revealed that SRC tumors were hypomethylated compared to control tissue, and that tumors at each transplantation site had a unique expression profile. Subsequent functional analysis of differentially expressed genes, albeit preliminary, provided some insight into the role that thymosin-β4, c-fos, and CTGF may play in chondrosarcoma development and progression.</p> <p>Conclusion</p> <p>This report describes the first global molecular characterization of the SRC model, and it demonstrates that the tumor microenvironment can induce epigenetic alterations and changes in gene expression in the SRC tumors. We documented changes in gene expression that accompany changes in tumor phenotype, and these gene expression changes provide insight into the pathways that may play a role in the development and progression of chondrosarcoma. Furthermore, specific functional analysis indicates that thymosin-β4 may have a role in chondrosarcoma metastasis.</p

    Organotypic modelling as a means of investigating epithelial-stromal interactions during tumourigenesis

    Get PDF
    The advent of co-culture approaches has allowed researchers to more accurately model the behaviour of epithelial cells in cell culture studies. The initial work on epidermal modelling allowed the development of reconstituted epidermis, growing keratinocytes on top of fibroblasts seeded in a collagen gel at an air-liquid interface to generate terminally differentiated 'skin equivalents'. In addition to developing ex vivo skin sheets for the treatment of burns victims, such cultures have also been used as a means of investigating both the development and repair of the epidermis, in more relevant conditions than simple two-dimensional culture, but without the use of animals. More recently, by varying the cell types used and adjusting the composition of the matrix components, this physiological system can be adapted to allow the study of interactions between tumour cells and their surrounding stroma, particularly with regards to how such interactions regulate invasion. Here we provide a summary of the major themes involved in tumour progression and consider the evolution of the approaches used to study cancer cell behaviour. Finally, we review how organotypic models have facilitated the study of several key pathways in cancer development and invasion, and speculate on the exciting future roles for these models in cancer research
    corecore