471 research outputs found
Magnetic hysteresis in Ising-like dipole-dipole model
Using zero temperature Monte Carlo simulations we have studied the magnetic
hysteresis in a three-dimensional Ising model with nearest neighbor exchange
and dipolar interaction. The average magnetization of spins located inside a
sphere on a cubic lattice is determined as a function of magnetic field varied
periodically. The simulations have justified the appearance of hysteresis and
allowed us to have a deeper insight into the series of metastable states
developed during this process.Comment: REVTEX, 10 pages including 4 figure
Energy level statistics for models of coupled single-mode Bose--Einstein condensates
We study the distribution of energy level spacings in two models describing
coupled single-mode Bose-Einstein condensates. Both models have a fixed number
of degrees of freedom, which is small compared to the number of interaction
parameters, and is independent of the dimensionality of the Hilbert space. We
find that the distribution follows a universal Poisson form independent of the
choice of coupling parameters, which is indicative of the integrability of both
models. These results complement those for integrable lattice models where the
number of degrees of freedom increases with increasing dimensionality of the
Hilbert space. Finally, we also show that for one model the inclusion of an
additional interaction which breaks the integrability leads to a non-Poisson
distribution.Comment: 5 pages, 4 figures, revte
Asymptotic Dynamics in Quantum Field Theory
A crucial element of scattering theory and the LSZ reduction formula is the
assumption that the coupling vanishes at large times. This is known not to hold
for the theories of the Standard Model and in general such asymptotic dynamics
is not well understood. We give a description of asymptotic dynamics in field
theories which incorporates the important features of weak convergence and
physical boundary conditions. Applications to theories with three and four
point interactions are presented and the results are shown to be completely
consistent with the results of perturbation theory.Comment: 18 pages, 3 figure
Resumming the large-N approximation for time evolving quantum systems
In this paper we discuss two methods of resumming the leading and next to
leading order in 1/N diagrams for the quartic O(N) model. These two approaches
have the property that they preserve both boundedness and positivity for
expectation values of operators in our numerical simulations. These
approximations can be understood either in terms of a truncation to the
infinitely coupled Schwinger-Dyson hierarchy of equations, or by choosing a
particular two-particle irreducible vacuum energy graph in the effective action
of the Cornwall-Jackiw-Tomboulis formalism. We confine our discussion to the
case of quantum mechanics where the Lagrangian is . The
key to these approximations is to treat both the propagator and the
propagator on similar footing which leads to a theory whose graphs have the
same topology as QED with the propagator playing the role of the photon.
The bare vertex approximation is obtained by replacing the exact vertex
function by the bare one in the exact Schwinger-Dyson equations for the one and
two point functions. The second approximation, which we call the dynamic Debye
screening approximation, makes the further approximation of replacing the exact
propagator by its value at leading order in the 1/N expansion. These two
approximations are compared with exact numerical simulations for the quantum
roll problem. The bare vertex approximation captures the physics at large and
modest better than the dynamic Debye screening approximation.Comment: 30 pages, 12 figures. The color version of a few figures are
separately liste
EQUIVALENCES BETWEEN STOCHASTIC SYSTEMS
Time-dependent correlation functions of (unstable) particles undergoing
biased or unbiased diffusion, coagulation and annihilation are calculated. This
is achieved by similarity transformations between different stochastic models
and between stochastic and soluble {\em non-stochastic} models. The results
agree with experiments on one-dimensional annihilation-coagulation processes.Comment: 15 pages, Latex. Some corrections made and an appendix adde
The detection of extragalactic N: Consequences for nitrogen nucleosynthesis and chemical evolution
Detections of extragalactic N are reported from observations of the
rare hydrogen cyanide isotope HCN toward the Large Magellanic Cloud
(LMC) and the core of the (post-) starburst galaxy NGC 4945. Accounting for
optical depth effects, the LMC data from the massive star-forming region N113
infer a N ratio of 111 17, about twice the C
value. For the LMC star-forming region N159HW and for the central region of NGC
4945, N ratios are also 100. The N ratios
are smaller than all interstellar nitrogen isotope ratios measured in the disk
and center of the Milky Way, strongly supporting the idea that N is
predominantly of `primary' nature, with massive stars being its dominant
source. Although this appears to be in contradiction with standard stellar
evolution and nucleosynthesis calculations, it supports recent findings of
abundant N production due to rotationally induced mixing of protons into
the helium-burning shells of massive stars.Comment: 15 pages including one postscript figure, accepted for publication by
ApJ Letter, further comments: please contact Yi-nan Chi
CO(1-0), CO(2-1) and Neutral Gas in NGC 6946: Molecular Gas in a Late-Type, Gas Rich, Spiral Galaxy
We present "On The Fly" maps of the CO(1-0) and CO(2-1) emission covering a
10' X 10' region of the NGC 6946. Using our CO maps and archival VLA HI
observations we create a total gas surface density map, Sigma_gas, for NGC
6946. The predominantly molecular inner gas disk transitions smoothly into an
atomic outer gas disk, with equivalent atomic and molecular gas surface
densities at R = 3.5' (6 kpc). We estimate that the total H2 mass is 3 X 10^9
Mo, roughly 1/3 of the interstellar hydrogen gas mass, and about 2% of the
dynamical mass of the galaxy at our assumed distance of 6 Mpc. The value of the
CO(2-1)/CO(1-0) line ratio ranges from 0.35 to 2; 50% of the map is covered by
very high ratio, >1, gas. The very high ratios are predominantly from interarm
regions and appear to indicate the presence of wide-spread optically thin gas.
Star formation tracers are better correlated with the total neutral gas disk
than with the molecular gas by itself implying SFR is proportional to
Sigma_gas. Using the 100 FIR and 21 cm continuum from NGC 6946 as star
formation tracers, we arrive at a gas consumption timescale of 2.8 Gyr, which
is relatively uniform across the disk. The high star formation rate at the
nucleus appears to be due to a large accumulation of molecular gas rather than
a large increase in the star formation efficiency. The mid-plane gas pressure
in the outer (R > 10 kpc) HI arms of NGC 6946 is close to the value at the
radial limit (10 kpc) of our observed CO disk. If the mid-plane gas pressure is
a factor for the formation of molecular clouds, these outer HI gas arms should
contain molecular gas which we do not see because they are beyond our detection
limit
A sufficient criterion for integrability of stochastic many-body dynamics and quantum spin chains
We propose a dynamical matrix product ansatz describing the stochastic
dynamics of two species of particles with excluded-volume interaction and the
quantum mechanics of the associated quantum spin chains respectively. Analyzing
consistency of the time-dependent algebra which is obtained from the action of
the corresponding Markov generator, we obtain sufficient conditions on the
hopping rates for identifing the integrable models. From the dynamical algebra
we construct the quadratic algebra of Zamolodchikov type, associativity of
which is a Yang Baxter equation. The Bethe ansatz equations for the spectra are
obtained directly from the dynamical matrix product ansatz.Comment: 19 pages Late
Unconstrained SU(2) Yang-Mills Quantum Mechanics with Theta Angle
The unconstrained classical system equivalent to spatially homogeneous SU(2)
Yang-Mills theory with theta angle is obtained and canonically quantized. The
Schr\"odinger eigenvalue problem is solved approximately for the low lying
states using variational calculation. The properties of the groundstate are
discussed, in particular its electric and magnetic properties, and the value of
the "gluon condensate" is calculated. Furthermore it is shown that the energy
spectrum of SU(2) Yang-Mills quantum mechanics is independent of the theta
angle. Explicit evaluation of the Witten formula for the topological
susceptibility gives strong support for the consistency of the variational
results obtained.Comment: 20 pages REVTEX, no figures, one reference added, final version to
appear in Phys. Rev.
Hamiltonian reduction of SU(2) Dirac-Yang-Mills mechanics
The SU(2) gauge invariant Dirac-Yang-Mills mechanics of spatially homogeneous
isospinor and gauge fields is considered in the framework of the generalized
Hamiltonian approach. The unconstrained Hamiltonian system equivalent to the
model is obtained using the gaugeless method of Hamiltonian reduction. The
latter includes the Abelianization of the first class constraints, putting the
second class constraints into the canonical form and performing a canonical
transformation to a set of adapted coordinates such that a subset of the new
canonical pairs coincides with the second class constraints and part of the new
momenta is equal to the Abelian constraints. In the adapted basis the pure
gauge degrees of freedom automatically drop out from the consideration after
projection of the model onto the constraint shell. Apart from the elimination
of these ignorable degrees of freedom a further Hamiltonian reduction is
achieved due to the three dimensional group of rigid symmetry possessed by the
system.Comment: 25 pages Revtex, no figure
- …