468 research outputs found

    Magnetic hysteresis in Ising-like dipole-dipole model

    Full text link
    Using zero temperature Monte Carlo simulations we have studied the magnetic hysteresis in a three-dimensional Ising model with nearest neighbor exchange and dipolar interaction. The average magnetization of spins located inside a sphere on a cubic lattice is determined as a function of magnetic field varied periodically. The simulations have justified the appearance of hysteresis and allowed us to have a deeper insight into the series of metastable states developed during this process.Comment: REVTEX, 10 pages including 4 figure

    Energy level statistics for models of coupled single-mode Bose--Einstein condensates

    Full text link
    We study the distribution of energy level spacings in two models describing coupled single-mode Bose-Einstein condensates. Both models have a fixed number of degrees of freedom, which is small compared to the number of interaction parameters, and is independent of the dimensionality of the Hilbert space. We find that the distribution follows a universal Poisson form independent of the choice of coupling parameters, which is indicative of the integrability of both models. These results complement those for integrable lattice models where the number of degrees of freedom increases with increasing dimensionality of the Hilbert space. Finally, we also show that for one model the inclusion of an additional interaction which breaks the integrability leads to a non-Poisson distribution.Comment: 5 pages, 4 figures, revte

    Asymptotic Dynamics in Quantum Field Theory

    Get PDF
    A crucial element of scattering theory and the LSZ reduction formula is the assumption that the coupling vanishes at large times. This is known not to hold for the theories of the Standard Model and in general such asymptotic dynamics is not well understood. We give a description of asymptotic dynamics in field theories which incorporates the important features of weak convergence and physical boundary conditions. Applications to theories with three and four point interactions are presented and the results are shown to be completely consistent with the results of perturbation theory.Comment: 18 pages, 3 figure

    Resumming the large-N approximation for time evolving quantum systems

    Get PDF
    In this paper we discuss two methods of resumming the leading and next to leading order in 1/N diagrams for the quartic O(N) model. These two approaches have the property that they preserve both boundedness and positivity for expectation values of operators in our numerical simulations. These approximations can be understood either in terms of a truncation to the infinitely coupled Schwinger-Dyson hierarchy of equations, or by choosing a particular two-particle irreducible vacuum energy graph in the effective action of the Cornwall-Jackiw-Tomboulis formalism. We confine our discussion to the case of quantum mechanics where the Lagrangian is L(x,x˙)=(1/2)i=1Nx˙i2(g/8N)[i=1Nxi2r02]2L(x,\dot{x}) = (1/2) \sum_{i=1}^{N} \dot{x}_i^2 - (g/8N) [ \sum_{i=1}^{N} x_i^2 - r_0^2 ]^{2}. The key to these approximations is to treat both the xx propagator and the x2x^2 propagator on similar footing which leads to a theory whose graphs have the same topology as QED with the x2x^2 propagator playing the role of the photon. The bare vertex approximation is obtained by replacing the exact vertex function by the bare one in the exact Schwinger-Dyson equations for the one and two point functions. The second approximation, which we call the dynamic Debye screening approximation, makes the further approximation of replacing the exact x2x^2 propagator by its value at leading order in the 1/N expansion. These two approximations are compared with exact numerical simulations for the quantum roll problem. The bare vertex approximation captures the physics at large and modest NN better than the dynamic Debye screening approximation.Comment: 30 pages, 12 figures. The color version of a few figures are separately liste

    EQUIVALENCES BETWEEN STOCHASTIC SYSTEMS

    Full text link
    Time-dependent correlation functions of (unstable) particles undergoing biased or unbiased diffusion, coagulation and annihilation are calculated. This is achieved by similarity transformations between different stochastic models and between stochastic and soluble {\em non-stochastic} models. The results agree with experiments on one-dimensional annihilation-coagulation processes.Comment: 15 pages, Latex. Some corrections made and an appendix adde

    The detection of extragalactic 15^{15}N: Consequences for nitrogen nucleosynthesis and chemical evolution

    Full text link
    Detections of extragalactic 15^{15}N are reported from observations of the rare hydrogen cyanide isotope HC15^{15}N toward the Large Magellanic Cloud (LMC) and the core of the (post-) starburst galaxy NGC 4945. Accounting for optical depth effects, the LMC data from the massive star-forming region N113 infer a 14N/15^{14}N/^{15}N ratio of 111 ±\pm 17, about twice the 12C/13^{12}C/^{13}C value. For the LMC star-forming region N159HW and for the central region of NGC 4945, 14N/15^{14}N/^{15}N ratios are also \approx 100. The 14N/15^{14}N/^{15}N ratios are smaller than all interstellar nitrogen isotope ratios measured in the disk and center of the Milky Way, strongly supporting the idea that 15^{15}N is predominantly of `primary' nature, with massive stars being its dominant source. Although this appears to be in contradiction with standard stellar evolution and nucleosynthesis calculations, it supports recent findings of abundant 15^{15}N production due to rotationally induced mixing of protons into the helium-burning shells of massive stars.Comment: 15 pages including one postscript figure, accepted for publication by ApJ Letter, further comments: please contact Yi-nan Chi

    CO(1-0), CO(2-1) and Neutral Gas in NGC 6946: Molecular Gas in a Late-Type, Gas Rich, Spiral Galaxy

    Full text link
    We present "On The Fly" maps of the CO(1-0) and CO(2-1) emission covering a 10' X 10' region of the NGC 6946. Using our CO maps and archival VLA HI observations we create a total gas surface density map, Sigma_gas, for NGC 6946. The predominantly molecular inner gas disk transitions smoothly into an atomic outer gas disk, with equivalent atomic and molecular gas surface densities at R = 3.5' (6 kpc). We estimate that the total H2 mass is 3 X 10^9 Mo, roughly 1/3 of the interstellar hydrogen gas mass, and about 2% of the dynamical mass of the galaxy at our assumed distance of 6 Mpc. The value of the CO(2-1)/CO(1-0) line ratio ranges from 0.35 to 2; 50% of the map is covered by very high ratio, >1, gas. The very high ratios are predominantly from interarm regions and appear to indicate the presence of wide-spread optically thin gas. Star formation tracers are better correlated with the total neutral gas disk than with the molecular gas by itself implying SFR is proportional to Sigma_gas. Using the 100 FIR and 21 cm continuum from NGC 6946 as star formation tracers, we arrive at a gas consumption timescale of 2.8 Gyr, which is relatively uniform across the disk. The high star formation rate at the nucleus appears to be due to a large accumulation of molecular gas rather than a large increase in the star formation efficiency. The mid-plane gas pressure in the outer (R > 10 kpc) HI arms of NGC 6946 is close to the value at the radial limit (10 kpc) of our observed CO disk. If the mid-plane gas pressure is a factor for the formation of molecular clouds, these outer HI gas arms should contain molecular gas which we do not see because they are beyond our detection limit

    A sufficient criterion for integrability of stochastic many-body dynamics and quantum spin chains

    Full text link
    We propose a dynamical matrix product ansatz describing the stochastic dynamics of two species of particles with excluded-volume interaction and the quantum mechanics of the associated quantum spin chains respectively. Analyzing consistency of the time-dependent algebra which is obtained from the action of the corresponding Markov generator, we obtain sufficient conditions on the hopping rates for identifing the integrable models. From the dynamical algebra we construct the quadratic algebra of Zamolodchikov type, associativity of which is a Yang Baxter equation. The Bethe ansatz equations for the spectra are obtained directly from the dynamical matrix product ansatz.Comment: 19 pages Late

    Unconstrained SU(2) Yang-Mills Quantum Mechanics with Theta Angle

    Get PDF
    The unconstrained classical system equivalent to spatially homogeneous SU(2) Yang-Mills theory with theta angle is obtained and canonically quantized. The Schr\"odinger eigenvalue problem is solved approximately for the low lying states using variational calculation. The properties of the groundstate are discussed, in particular its electric and magnetic properties, and the value of the "gluon condensate" is calculated. Furthermore it is shown that the energy spectrum of SU(2) Yang-Mills quantum mechanics is independent of the theta angle. Explicit evaluation of the Witten formula for the topological susceptibility gives strong support for the consistency of the variational results obtained.Comment: 20 pages REVTEX, no figures, one reference added, final version to appear in Phys. Rev.

    Hamiltonian reduction of SU(2) Dirac-Yang-Mills mechanics

    Get PDF
    The SU(2) gauge invariant Dirac-Yang-Mills mechanics of spatially homogeneous isospinor and gauge fields is considered in the framework of the generalized Hamiltonian approach. The unconstrained Hamiltonian system equivalent to the model is obtained using the gaugeless method of Hamiltonian reduction. The latter includes the Abelianization of the first class constraints, putting the second class constraints into the canonical form and performing a canonical transformation to a set of adapted coordinates such that a subset of the new canonical pairs coincides with the second class constraints and part of the new momenta is equal to the Abelian constraints. In the adapted basis the pure gauge degrees of freedom automatically drop out from the consideration after projection of the model onto the constraint shell. Apart from the elimination of these ignorable degrees of freedom a further Hamiltonian reduction is achieved due to the three dimensional group of rigid symmetry possessed by the system.Comment: 25 pages Revtex, no figure
    corecore