46,158 research outputs found

    Derivation of effective spin models from a three band model for CuO_2-planes

    Full text link
    The derivation of effective spin models describing the low energy magnetic properties of undoped CuO_2-planes is reinvestigated. Our study aims at a quantitative determination of the parameters of effective spin models from those of a multi-band model and is supposed to be relevant to the analysis of recent improved experimental data on the spin wave spectrum of La_2CuO_4. Starting from a conventional three-band model we determine the exchange couplings for the nearest and next-nearest neighbor Heisenberg exchange as well as for 4- and 6-spin exchange terms via a direct perturbation expansion up to 12th (14th for the 4-spin term) order with respect to the copper-oxygen hopping t_pd. Our results demonstrate that this perturbation expansion does not converge for hopping parameters of the relevant size. Well behaved extrapolations of the couplings are derived, however, in terms of Pade approximants. In order to check the significance of these results from the direct perturbation expansion we employ the Zhang-Rice reformulation of the three band model in terms of hybridizing oxygen Wannier orbitals centered at copper ion sites. In the Wannier notation the perturbation expansion is reorganized by an exact treatment of the strong site-diagonal hybridization. The perturbation expansion with respect to the weak intersite hybridizations is calculated up to 4th order for the Heisenberg coupling and up to 6th order for the 4-spin coupling. It shows excellent convergence and the results are in agreement with the Pade approximants of the direct expansion. The relevance of the 4-spin coupling as the leading correction to the nearest neighbor Heisenberg model is emphasized.Comment: 27 pages, 10 figures. Changed from particle to hole notation, right value for the charge transfer gap used; this results in some changes in the figures and a higher value of the ring exchang

    Some Exact Solutions For The Classical Hall Effect In Inhomogeneous Magnetic Field

    Full text link
    The classical Hall effect in inhomogeneous systems is considered for the case of one-dimensional inhomogeneity. For a certain geometry of the problem and for the magnetic field linearly depending on the coordinate the density of current distribution corresponds to the skin-effect.Comment: 5 pages, LaTe

    Interfaces between highly incompatible polymers of different stiffness: Monte Carlo simulations and self-consistent field calculations

    Full text link
    We investigate interfacial properties between two highly incompatible polymers of different stiffness. The extensive Monte Carlo simulations of the binary polymer melt yield detailed interfacial profiles and the interfacial tension via an analysis of capillary fluctuations. We extract an effective Flory-Huggins parameter from the simulations, which is used in self-consistent field calculations. These take due account of the chain architecture via a partial enumeration of the single chain partition function, using chain conformations obtained by Monte Carlo simulations of the pure phases. The agreement between the simulations and self-consistent field calculations is almost quantitative, however we find deviations from the predictions of the Gaussian chain model for high incompatibilities or large stiffness. The interfacial width at very high incompatibilities is smaller than the prediction of the Gaussian chain model, and decreases upon increasing the statistical segment length of the semi-flexible component.Comment: to appear in J.Chem.Phy

    The locality of the square-root method for improved staggered quarks

    Full text link
    We study the effects of improvement on the locality of square-rooted staggered Dirac operators in lattice QCD simulations. We find the localisation lengths of the improved operators (FAT7TAD and ASQTAD) to be very similar to that of the one-link operator studied by Bunk et al., being at least the Compton wavelength of the lightest particle in the theory, even in the continuum limit. We conclude that improvement has no effect. We discuss the implications of this result for the locality of the nth-rooted fermion determinant used to reduce the number of sea quark flavours, and for possible staggered valence quark formulations

    Gauge-variant propagators and the running coupling from lattice QCD

    Get PDF
    On the occasion of the 70th birthday of Prof. Adriano Di Giacomo we report on recent numerical computations of the Landau gauge gluon and ghost propagators as well as of a non-symmetric MOM-scheme ghost-gluon vertex in quenched and full lattice QCD. Special emphasis is paid to the Gribov copy problem and to the unquenching effect. The corresponding running coupling \alpha_s(q^2) is found and shown to decrease for q^2 \le 0.3 GeV^2 in the infrared limit. No indication for a non-trivial infrared fixed point is seen in agreement with findings from truncated systems of Dyson-Schwinger equations treated on a four-dimensional torus.Comment: contribution to "Sense of Beauty in Physics", Festschrift in honor of Adriano Di Giacomo's 70-th birthda

    A new stellar mixing process operating below shell convection zones following off-center ignition

    Full text link
    During most stages of stellar evolution the nuclear burning of lighter to heavier elements results in a radial composition profile which is stabilizing against buoyant acceleration, with light material residing above heavier material. However, under some circumstances, such as off-center ignition, the composition profile resulting from nuclear burning can be destabilizing, and characterized by an outwardly increasing mean molecular weight. The potential for instabilities under these circumstances, and the consequences that they may have on stellar structural evolution, remain largely unexplored. In this paper we study the development and evolution of instabilities associated with unstable composition gradients in regions which are initially stable according to linear Schwarzschild and Ledoux criteria. In particular, we explore the mixing taking place under various conditions with multi-dimensional hydrodynamic convection models based on stellar evolutionary calculations of the core helium flash in a 1.25 \Msun star, the core carbon flash in a 9.3\,\Msun star, and of oxygen shell burning in a star with a mass of 23\,\Msun. The results of our simulations reveal a mixing process associated with regions having outwardly increasing mean molecular weight that reside below convection zones. The mixing is not due to overshooting from the convection zone, nor is it due directly to thermohaline mixing which operates on a timescale several orders of magnitude larger than the simulated flows. Instead, the mixing appears to be due to the presence of a wave field induced in the stable layers residing beneath the convection zone which enhances the mixing rate by many orders of magnitude and allows a thermohaline type mixing process to operate on a dynamical, rather than thermal, timescale. We discuss our results in terms of related laboratory phenomena and associated theoretical developments.Comment: accepted for publication in Astrophysical Journal, 9 pages, 8 figure
    • …
    corecore