1,398 research outputs found

    Boundary Between Stable and Unstable Regimes of Accretion

    Full text link
    We investigated the boundary between stable and unstable regimes of accretion and its dependence on different parameters. Simulations were performed using a "cubed sphere" code with high grid resolution (244 grid points in the azimuthal direction), which is twice as high as that used in our earlier studies. We chose a very low viscosity value, with alpha-parameter alpha=0.02. We observed from the simulations that the boundary strongly depends on the ratio between magnetospheric radius r_m (where the magnetic stress in the magnetosphere matches the matter stress in the disk) and corotation radius r_cor (where the Keplerian velocity in the disk is equal to the angular velocity of the star). For a small misalignment angle of the dipole field, Theta=5 degrees, accretion is unstable if r_cor/r_m>1.35, and is stable otherwise. In cases of a larger misalignment angle of the dipole, Theta=20 degrees, instability occurs at slightly larger values, r_cor/r_m>1.41.Comment: 4 pages, 4 figures, conference proceedings: "Physics at the Magnetospheric Boundary", Geneva, Switzerland, 25-28 June, 201

    Accretion into black holes with magnetic fields, and relativistic jets

    Full text link
    We discuss the problem of the formation of a large-scale magnetic field in the accretion disks around black holes, taking into account the non-uniform vertical structure of the disk. The high electrical conductivity of the outer layers of the disk prevents the outward diffusion of the magnetic field. This implies a stationary state with a strong magnetic field in the inner parts of the accretion disk close to the black hole, and zero radial velocity at the surface of the disk. Structure of advective accretion disks is investigated, and conditions for formation of optically thin regions in central parts of the accretion disk are found. The problem of jet collimation by magneto-torsion oscillations is considered.Comment: 6 pages, 4 figure

    MHD simulations of disk-star interaction

    Full text link
    We discuss a number of topics relevant to disk-magnetosphere interaction and how numerical simulations illuminate them. The topics include: (1) disk-magnetosphere interaction and the problem of disk-locking; (2) the wind problem; (3) structure of the magnetospheric flow, hot spots at the star's surface, and the inner disk region; (4) modeling of spectra from 3D funnel streams; (5) accretion to a star with a complex magnetic field; (6) accretion through 3D instabilities; (7) magnetospheric gap and survival of protoplanets. Results of both 2D and 3D simulations are discussed.Comment: 12 pages, 10 figures, Star-Disk Interaction in Young Stars, Proceedings of the International Astronomical Union, IAU Symposium, Volume 243. See animations at http://astro.cornell.edu/~romanova/projects.htm and at http://astro.cornell.edu/us-rus

    Relativistic Jets from Accretion Disks

    Full text link
    The jets observed to emanate from many compact accreting objects may arise from the twisting of a magnetic field threading a differentially rotating accretion disk which acts to magnetically extract angular momentum and energy from the disk. Two main regimes have been discussed, hydromagnetic jets, which have a significant mass flux and have energy and angular momentum carried by both matter and electromagnetic field and, Poynting jets, where the mass flux is small and energy and angular momentum are carried predominantly by the electromagnetic field. Here, we describe recent theoretical work on the formation of relativistic Poynting jets from magnetized accretion disks. Further, we describe new relativistic, fully-electromagnetic, particle-in-cell simulations of the formation of jets from accretion disks. Analog Z-pinch experiments may help to understand the origin of astrophysical jets.Comment: 7 pages, 3 figures, Proc. of High Energy Density Astrophysics Conf., 200

    AGN Obscuring Tori Supported by Infrared Radiation Pressure

    Get PDF
    Explicit 2-d axisymmetric solutions are found to the hydrostatic equilibrium, energy balance, and photon diffusion equations within obscuring tori around active galactic nuclei. These solutions demonstrate that infrared radiation pressure can support geometrically thick structures in AGN environments subject to certain constraints: the bolometric luminosity must be roughly 0.03--1 times the Eddington luminosity; and the Compton optical depth of matter in the equatorial plane should be order unity, with a tolerance of about an order of magnitude up or down. Both of these constraints are at least roughly consistent with observations. In addition, angular momentum must be redistributed so that the fractional rotational support against gravity rises from the inner edge of the torus to the outer in a manner specific to the detailed shape of the gravitational potential. This model also predicts that the column densities observed in obscured AGN should range from about 10^{22} to about 10^{24} cm^{-2}.Comment: ApJ, in pres
    corecore