2,791 research outputs found
Platelet deposition studies on copolyether urethanes modified with poly(ethylene oxide)
Pellethane ® 2363 80A films and tubings were chemically modified and the effect of these modifications on platelet deposition was studied. Grafting of high molecular weight poly(ethylene oxide) and graft polymerization of methoxy poly(ethylene glycol) 400 methacrylate resulted in surfaces with a good water wettability. The increased hydrophilicity of these modified surfaces could be demonstrated by contact angle measurements. The platelet deposition was investigated with tubings in a capillary flow system, using different types of perfusates. Platelet deposition from a buffer-containing perfusate on surfaces modified with either high molecular weight poly(ethylene oxide) or methoxy poly(ethylene glycol) 400 methacrylate was almost absent and less than on Pellethane 2363 80A. Using a citrated plasmacontaining perfusate the amount of deposited platelets on Pellethane 2363 80A modified with high molecular weight poly(ethylene oxide) was low and about the same as on unmodified surfaces. However, a marked reduced platelet deposition compared to unmodified Pellethane 2363 80A was found when the platelets were activated by Ca2+ ionophore. The improved blood compatibility of the modified Pellethane 2363 80A tubings obviously indicates the favourable effect of the presence of grafted PEO on the surface
Preferential adsorption of high density lipoprotein (HDL) in blood plasma/polymer interaction
A few studies on the adsorption of plasma proteins to polymeric surfaces show that major plasma proteins: albumin (Alb), fibrinogen (Fb) and immunoglobulin (IgG) are adsorbed in much smaller quantities from plasma than from protein solutions (1,2). Present results show that this difference in adsorption is due to the preferential adsorption of high density lipoprotein from plasma onto the material surfaces studied (PVC and PS)
Temperature Dependence of Interlayer Magnetoresistance in Anisotropic Layered Metals
Studies of interlayer transport in layered metals have generally made use of
zero temperature conductivity expressions to analyze angle-dependent
magnetoresistance oscillations (AMRO). However, recent high temperature AMRO
experiments have been performed in a regime where the inclusion of finite
temperature effects may be required for a quantitative description of the
resistivity. We calculate the interlayer conductivity in a layered metal with
anisotropic Fermi surface properties allowing for finite temperature effects.
We find that resistance maxima are modified by thermal effects much more
strongly than resistance minima. We also use our expressions to calculate the
interlayer resistivity appropriate to recent AMRO experiments in an overdoped
cuprate which led to the conclusion that there is an anisotropic, linear in
temperature contribution to the scattering rate and find that this conclusion
is robust.Comment: 8 pages, 4 figure
Gate-tunable band structure of the LaAlO-SrTiO interface
The 2-dimensional electron system at the interface between LaAlO and
SrTiO has several unique properties that can be tuned by an externally
applied gate voltage. In this work, we show that this gate-tunability extends
to the effective band structure of the system. We combine a magnetotransport
study on top-gated Hall bars with self-consistent Schr\"odinger-Poisson
calculations and observe a Lifshitz transition at a density of
cm. Above the transition, the carrier density of one
of the conducting bands decreases with increasing gate voltage. This surprising
decrease is accurately reproduced in the calculations if electronic
correlations are included. These results provide a clear, intuitive picture of
the physics governing the electronic structure at complex oxide interfaces.Comment: 14 pages, 4 figure
Analytical calculation of the Green's function and Drude weight for a correlated fermion-boson system
In classical Drude theory the conductivity is determined by the mass of the
propagating particles and the mean free path between two scattering events. For
a quantum particle this simple picture of diffusive transport loses relevance
if strong correlations dominate the particle motion. We study a situation where
the propagation of a fermionic particle is possible only through creation and
annihilation of local bosonic excitations. This correlated quantum transport
process is outside the Drude picture, since one cannot distinguish between free
propagation and intermittent scattering. The characterization of transport is
possible using the Drude weight obtained from the f-sum rule, although its
interpretation in terms of free mass and mean free path breaks down. For the
situation studied we calculate the Green's function and Drude weight using a
Green's functions expansion technique, and discuss their physical meaning.Comment: final version, minor correction
The Chandra LETGS high resolution X-ray spectrum of the isolated neutron star RX J1856.5-3754
We present the Chandra LETGS X-ray spectrum of the nearby (~60 pc) neutron
star RX J1856.5-3754. Detailed spectral analysis of the combined X-ray and
optical data rules out the nonmagnetic neutron star atmosphere models with
hydrogen, helium, iron and solar compositions. We also conclude that strongly
magnetized atmosphere models are unable to represent the data. The data can be
explained with a two-component blackbody model. The harder component with
temperature of kT_bb~63 eV and a radius R_bb~2.2 km of the emitting region well
fits the X-ray data and can be interpreted as radiation from a hot region on
the star's surface.Comment: 4 pages, 3 color figures; acceped by A&A Letters;
http://www.xray.mpe.mpg.de/~burwitz/burwitz_refereed.htm
Shock waves in the dissipative Toda lattice
We consider the propagation of a shock wave (SW) in the damped Toda lattice.
The SW is a moving boundary between two semi-infinite lattice domains with
different densities. A steadily moving SW may exist if the damping in the
lattice is represented by an ``inner'' friction, which is a discrete analog of
the second viscosity in hydrodynamics. The problem can be considered
analytically in the continuum approximation, and the analysis produces an
explicit relation between the SW's velocity and the densities of the two
phases. Numerical simulations of the lattice equations of motion demonstrate
that a stable SW establishes if the initial velocity is directed towards the
less dense phase; in the opposite case, the wave gradually spreads out. The
numerically found equilibrium velocity of the SW turns out to be in a very good
agreement with the analytical formula even in a strongly discrete case. If the
initial velocity is essentially different from the one determined by the
densities (but has the correct sign), the velocity does not significantly
alter, but instead the SW adjusts itself to the given velocity by sending
another SW in the opposite direction.Comment: 10 pages in LaTeX, 5 figures available upon regues
- …