27,760 research outputs found

    Majorana spinors and extended Lorentz symmetry in four-dimensional theory

    Full text link
    An extended local Lorentz symmetry in four-dimensional (4D) theory is considered. A source of this symmetry is a group of general linear transformations of four-component Majorana spinors GL(4,M) which is isomorphic to GL(4,R) and is the covering of an extended Lorentz group in a 6D Minkowski space M(3,3) including superluminal and scaling transformations. Physical space-time is assumed to be a 4D pseudo-Riemannian manifold. To connect the extended Lorentz symmetry in the M(3,3) space with the physical space-time, a fiber bundle over the 4D manifold is introduced with M(3,3) as a typical fiber. The action is constructed which is invariant with respect to both general 4D coordinate and local GL(4,M) spinor transformations. The components of the metric on the 6D fiber are expressed in terms of the 4D pseudo-Riemannian metric and two extra complex fields: 4D vector and scalar ones. These extra fields describe in the general case massive particles interacting with an extra U(1) gauge field and weakly interacting with ordinary particles, i.e. possessing properties of invisible (dark) matter.Comment: 24 page

    Radial Redshift Space Distortions

    Get PDF
    The radial component of the peculiar velocities of galaxies cause displacements in their positions in redshift space. We study the effect of the peculiar velocities on the linear redshift space two point correlation function. Our analysis takes into account the radial nature of the redshift space distortions and it highlights the limitations of the plane parallel approximation. We consider the problem of determining the value of \beta and the real space two point correlation function from the linear redshift space two point correlation function. The inversion method proposed here takes into account the radial nature of the redshift space distortions and can be applied to magnitude limited redshift surveys that have only partial sky coverage.Comment: 26 pages including 11 figures, to appear in Ap

    An Inversion Method for Measuring Beta in Large Redshift Surveys

    Full text link
    A precision method for determining the value of Beta= Omega_m^{0.6}/b, where b is the galaxy bias parameter, is presented. In contrast to other existing techniques that focus on estimating this quantity by measuring distortions in the redshift space galaxy-galaxy correlation function or power spectrum, this method removes the distortions by reconstructing the real space density field and determining the value of Beta that results in a symmetric signal. To remove the distortions, the method modifies the amplitudes of a Fourier plane-wave expansion of the survey data parameterized by Beta. This technique is not dependent on the small-angle/plane-parallel approximation and can make full use of large redshift survey data. It has been tested using simulations with four different cosmologies and returns the value of Beta to +/- 0.031, over a factor of two improvement over existing techniques.Comment: 16 pages including 6 figures Submitted to The Astrophysical Journa

    Differential reductions of the Kadomtsev-Petviashvili equation and associated higher dimensional nonlinear PDEs

    Full text link
    We represent an algorithm allowing one to construct new classes of partially integrable multidimensional nonlinear partial differential equations (PDEs) starting with the special type of solutions to the (1+1)-dimensional hierarchy of nonlinear PDEs linearizable by the matrix Hopf-Cole substitution (the B\"urgers hierarchy). We derive examples of four-dimensional nonlinear matrix PDEs together with they scalar and three-dimensional reductions. Variants of the Kadomtsev-Petviashvili type and Korteweg-de Vries type equations are represented among them. Our algorithm is based on the combination of two Frobenius type reductions and special differential reduction imposed on the matrix fields of integrable PDEs. It is shown that the derived four-dimensional nonlinear PDEs admit arbitrary functions of two variables in their solution spaces which clarifies the integrability degree of these PDEs.Comment: 20 pages, 1 fugur

    Tropical–North Pacific Climate Linkages over the Past Four Centuries

    Get PDF
    Analyses of instrumental data demonstrate robust linkages between decadal-scale North Pacific and tropical Indo-Pacific climatic variability. These linkages encompass common regime shifts, including the noteworthy 1976 transition in Pacific climate. However, information on Pacific decadal variability and the tropical high-latitude climate connection is limited prior to the twentieth century. Herein tree-ring analysis is employed to extend the understanding of North Pacific climatic variability and related tropical linkages over the past four centuries. To this end, a tree-ring reconstruction of the December-May North Pacific index (NPI)-an index of the atmospheric circulation related to the Aleutian low pressure cell-is presented (1600-1983). The NPI reconstruction shows evidence for the three regime shifts seen in the instrumental NPI data, and for seven events in prior centuries. It correlates significantly with both instrumental tropical climate indices and a coral-based reconstruction of an optimal tropical Indo-Pacific climate index, supporting evidence for a tropical-North Pacific link extending as far west as the western Indian Ocean. The coral-based reconstruction (1781-1993) shows the twentieth-century regime shifts evident in the instrumental NPI and instrumental tropical Indo-Pacific climate index, and three previous shifts. Changes in the strength of correlation between the reconstructions over time, and the different identified shifts in both series prior to the twentieth century, suggest a varying tropical influence on North Pacific climate, with greater influence in the twentieth century. One likely mechanism is the low-frequency variability of the El Nino-Southern Oscillation (ENSO) and its varying impact on Indo-Pacific climate.</p

    The Chemical Enrichment History of the Large Magellanic Cloud

    Full text link
    Ca II triplet spectroscopy has been used to derive stellar metallicities for individual stars in four LMC fields situated at galactocentric distances of 3\arcdeg, 5\arcdeg, 6\arcdeg\@ and 8\arcdeg\@ to the north of the Bar. Observed metallicity distributions show a well defined peak, with a tail toward low metallicities. The mean metallicity remains constant until 6\arcdeg\@ ([Fe/H]∼\sim-0.5 dex), while for the outermost field, at 8\arcdeg, the mean metallicity is substantially lower than in the rest of the disk ([Fe/H]∼\sim-0.8 dex). The combination of spectroscopy with deep CCD photometry has allowed us to break the RGB age--metallicity degeneracy and compute the ages for the objects observed spectroscopically. The obtained age--metallicity relationships for our four fields are statistically indistinguishable. We conclude that the lower mean metallicity in the outermost field is a consequence of it having a lower fraction of intermediate-age stars, which are more metal-rich than the older stars. The disk age--metallicity relationship is similar to that for clusters. However, the lack of objects with ages between 3 and 10 Gyr is not observed in the field population. Finally, we used data from the literature to derive consistently the age--metallicity relationship of the bar. Simple chemical evolution models have been used to reproduce the observed age--metallicity relationships with the purpose of investigating which mechanism has participated in the evolution of the disk and bar. We find that while the disk age--metallicity relationship is well reproduced by close-box models or models with a small degree of outflow, that of the bar is only reproduced by models with combination of infall and outflow.Comment: 45 pages, 10 figures, accepted for publication in Astronomical Journa

    Clump stars in the Solar Neighbourhood

    Get PDF
    Hipparcos data has allowed the identification of a large number of clump stars in the Solar Neighbourhood. We discuss our present knowledge about their distributions of masses, ages, colours, magnitudes, and metallicities. We point out that the age distribution of clump stars is ``biased'' towards intermediate-ages. Therefore, the metallicity information they contain is different from that provided by the local G dwarfs. Since accurate abundance determinations are about to become available, these may provide useful constraints to chemical evolution models of the local disc.Comment: 6 pages, proc. of the Sept. 20-24, 1999 Vulcano Workshop "The chemical evolution of the Milky Way: stars vs. clusters", eds. F. Matteucci, F. Giovanell

    Note on Redshift Distortion in Fourier Space

    Full text link
    We explore features of redshift distortion in Fourier analysis of N-body simulations. The phases of the Fourier modes of the dark matter density fluctuation are generally shifted by the peculiar motion along the line of sight, the induced phase shift is stochastic and has probability distribution function (PDF) symmetric to the peak at zero shift while the exact shape depends on the wave vector, except on very large scales where phases are invariant by linear perturbation theory. Analysis of the phase shifts motivates our phenomenological models for the bispectrum in redshift space. Comparison with simulations shows that our toy models are very successful in modeling bispectrum of equilateral and isosceles triangles at large scales. In the second part we compare the monopole of the power spectrum and bispectrum in the radial and plane-parallel distortion to test the plane-parallel approximation. We confirm the results of Scoccimarro (2000) that difference of power spectrum is at the level of 10%, in the reduced bispectrum such difference is as small as a few percents. However, on the plane perpendicular to the line of sight of k_z=0, the difference in power spectrum between the radial and plane-parallel approximation can be more than 10%, and even worse on very small scales. Such difference is prominent for bispectrum, especially for those configurations of tilted triangles. The non-Gaussian signals under radial distortion on small scales are systematically biased downside than that in plane-parallel approximation, while amplitudes of differences depend on the opening angle of the sample to the observer. The observation gives warning to the practice of using the power spectrum and bispectrum measured on the k_z=0 plane as estimation of the real space statistics.Comment: 15 pages, 8 figures. Accepted for publication in ChJA

    The Determination of Nuclear Level Densities from Experimental Information -

    Get PDF
    A novel Information Theory based method for determining the density of states from prior information is presented. The energy dependence of the density of states is determined from the observed number of states per energy interval and model calculations suggest that the method is sufficiently reliable to calculate the thermal properties of nuclei over a reasonable temperature range.Comment: 7 pages + 6 eps figures, REVTEX 3.

    High-pT pi0 Production with Respect to the Reaction Plane Using the PHENIX Detector at RHIC

    Get PDF
    The origin of the azimuthal anisotropy in particle yields at high pT (pT > 5 GeV/c) in RHIC collisions remains an intriguing puzzle. Traditional flow and parton energy loss models have failed to completely explain the large v2 observed at high pT. Measurement of this parameter at high pT will help to gain an understanding of the interplay between flow, recombination and energy loss, and the role they play in the transition from soft to hard physics. Neutral mesons measured in the PHENIX experiment provide an ideal observable for such studies. We present recent measurements of \piz yields with respect to the reaction plane, and discuss the impact current models have on our understanding of these mechanisms.Comment: Contribnution to the proceedings of Hot Quarks 2006, 15-20 May 2006, Villasimius, Sardini
    • …
    corecore