119,912 research outputs found

    A Study on Agreement in PICO Span Annotations

    Full text link
    In evidence-based medicine, relevance of medical literature is determined by predefined relevance conditions. The conditions are defined based on PICO elements, namely, Patient, Intervention, Comparator, and Outcome. Hence, PICO annotations in medical literature are essential for automatic relevant document filtering. However, defining boundaries of text spans for PICO elements is not straightforward. In this paper, we study the agreement of PICO annotations made by multiple human annotators, including both experts and non-experts. Agreements are estimated by a standard span agreement (i.e., matching both labels and boundaries of text spans), and two types of relaxed span agreement (i.e., matching labels without guaranteeing matching boundaries of spans). Based on the analysis, we report two observations: (i) Boundaries of PICO span annotations by individual human annotators are very diverse. (ii) Despite the disagreement in span boundaries, general areas of the span annotations are broadly agreed by annotators. Our results suggest that applying a standard agreement alone may undermine the agreement of PICO spans, and adopting both a standard and a relaxed agreements is more suitable for PICO span evaluation.Comment: Accepted in SIGIR 2019 (Short paper

    Photoinjector-generation of a flat electron beam with transverse emittance ratio of 100

    Full text link
    The generation of a flat electron beam directly from a photoinjector is an attractive alternative to the electron damping ring as envisioned for linear colliders. It also has potential applications to light sources such as the generation of ultra-short x-ray pulses or Smith-Purcell free electron lasers. In this Letter, we report on the experimental generation of a flat-beam with a measured transverse emittance ratio of 100±20.2100\pm 20.2 for a bunch charge of 0.5\sim 0.5 nC; the smaller measured normalized root-mean-square emittance is 0.4\sim 0.4 μ\mum and is limited by the resolution of our experimental setup. The experimental data, obtained at the Fermilab/NICADD Photoinjector Laboratory, are compared with numerical simulations and the expected scaling laws.Comment: 5 pages, 3 figure

    Detecting structural breaks in seasonal time series by regularized optimization

    Full text link
    Real-world systems are often complex, dynamic, and nonlinear. Understanding the dynamics of a system from its observed time series is key to the prediction and control of the system's behavior. While most existing techniques tacitly assume some form of stationarity or continuity, abrupt changes, which are often due to external disturbances or sudden changes in the intrinsic dynamics, are common in time series. Structural breaks, which are time points at which the statistical patterns of a time series change, pose considerable challenges to data analysis. Without identification of such break points, the same dynamic rule would be applied to the whole period of observation, whereas false identification of structural breaks may lead to overfitting. In this paper, we cast the problem of decomposing a time series into its trend and seasonal components as an optimization problem. This problem is ill-posed due to the arbitrariness in the number of parameters. To overcome this difficulty, we propose the addition of a penalty function (i.e., a regularization term) that accounts for the number of parameters. Our approach simultaneously identifies seasonality and trend without the need of iterations, and allows the reliable detection of structural breaks. The method is applied to recorded data on fish populations and sea surface temperature, where it detects structural breaks that would have been neglected otherwise. This suggests that our method can lead to a general approach for the monitoring, prediction, and prevention of structural changes in real systems.Comment: Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures (Edited by George Deodatis, Bruce R. Ellingwood and Dan M. Frangopol), CRC Press 2014, Pages 3621-362

    An quantum approach of measurement based on the Zurek's triple model

    Full text link
    In a close form without referring the time-dependent Hamiltonian to the total system, a consistent approach for quantum measurement is proposed based on Zurek's triple model of quantum decoherence [W.Zurek, Phys. Rev. D 24, 1516 (1981)]. An exactly-solvable model based on the intracavity system is dealt with in details to demonstrate the central idea in our approach: by peeling off one collective variable of the measuring apparatus from its many degrees of freedom, as the pointer of the apparatus, the collective variable de-couples with the internal environment formed by the effective internal variables, but still interacts with the measured system to form a triple entanglement among the measured system, the pointer and the internal environment. As another mechanism to cause decoherence, the uncertainty of relative phase and its many-particle amplification can be summed up to an ideal entanglement or an Shmidt decomposition with respect to the preferred basis.Comment: 22pages,3figure

    Efficient Construction of Probabilistic Tree Embeddings

    Get PDF
    In this paper we describe an algorithm that embeds a graph metric (V,dG)(V,d_G) on an undirected weighted graph G=(V,E)G=(V,E) into a distribution of tree metrics (T,DT)(T,D_T) such that for every pair u,vVu,v\in V, dG(u,v)dT(u,v)d_G(u,v)\leq d_T(u,v) and ET[dT(u,v)]O(logn)dG(u,v){\bf{E}}_{T}[d_T(u,v)]\leq O(\log n)\cdot d_G(u,v). Such embeddings have proved highly useful in designing fast approximation algorithms, as many hard problems on graphs are easy to solve on tree instances. For a graph with nn vertices and mm edges, our algorithm runs in O(mlogn)O(m\log n) time with high probability, which improves the previous upper bound of O(mlog3n)O(m\log^3 n) shown by Mendel et al.\,in 2009. The key component of our algorithm is a new approximate single-source shortest-path algorithm, which implements the priority queue with a new data structure, the "bucket-tree structure". The algorithm has three properties: it only requires linear time in the number of edges in the input graph; the computed distances have a distance preserving property; and when computing the shortest-paths to the kk-nearest vertices from the source, it only requires to visit these vertices and their edge lists. These properties are essential to guarantee the correctness and the stated time bound. Using this shortest-path algorithm, we show how to generate an intermediate structure, the approximate dominance sequences of the input graph, in O(mlogn)O(m \log n) time, and further propose a simple yet efficient algorithm to converted this sequence to a tree embedding in O(nlogn)O(n\log n) time, both with high probability. Combining the three subroutines gives the stated time bound of the algorithm. Then we show that this efficient construction can facilitate some applications. We proved that FRT trees (the generated tree embedding) are Ramsey partitions with asymptotically tight bound, so the construction of a series of distance oracles can be accelerated
    corecore