34,290 research outputs found

    Development of mathematical models of environmental physiology

    Get PDF
    Selected articles concerned with mathematical or simulation models of human thermoregulation are presented. The articles presented include: (1) development and use of simulation models in medicine, (2) model of cardio-vascular adjustments during exercise, (3) effective temperature scale based on simple model of human physiological regulatory response, (4) behavioral approach to thermoregulatory set point during exercise, and (5) importance of skin temperature in sweat regulation

    An operational satellite scatterometer for wind vector measurements over the ocean

    Get PDF
    Performance requirements and design characteristics of a microwave scatterometer wind sensor for measuring surface winds over the oceans on a global basis are described. Scatterometer specifications are developed from user requirements of wind vector measurement range and accuracy, swath width, resolution cell size and measurement grid spacing. A detailed analysis is performed for a baseline fan-beam scatterometer design, and its performance capabilities for meeting the SeaSat-A user requirements. Various modes of operation are discussed which will allow the resolution of questions concerning the effects of sea state on the scatterometer wind sensing ability and to verify design boundaries of the instrument

    Full Bulk Spin Polarization and Intrinsic Tunnel Barriers at the Surface of Layered Manganites

    Get PDF
    Transmission of information using the spin of the electron as well as its charge requires a high degree of spin polarization at surfaces. At surfaces however this degree of polarization can be quenched by competing interactions. Using a combination of surface sensitive x-ray and tunneling probes, we show for the quasi-two-dimensional bilayer manganites that the outermost Mn-O bilayer, alone, is affected: it is a 1-nm thick insulator that exhibits no long-range ferromagnetic order while the next bilayer displays the full spin polarization of the bulk. Such an abrupt localization of the surface effects is due to the two-dimensional nature of the layered manganite while the loss of ferromagnetism is attributed to weakened double exchange in the reconstructed surface bilayer and a resultant antiferromagnetic phase. The creation of a well-defined surface insulator demonstrates the ability to naturally self-assemble two of the most demanding components of an ideal magnetic tunnel junction.Comment: 19 pages, 5 figure

    Accurate Transfer Maps for Realistic Beamline Elements: Part I, Straight Elements

    Full text link
    The behavior of orbits in charged-particle beam transport systems, including both linear and circular accelerators as well as final focus sections and spectrometers, can depend sensitively on nonlinear fringe-field and high-order-multipole effects in the various beam-line elements. The inclusion of these effects requires a detailed and realistic model of the interior and fringe fields, including their high spatial derivatives. A collection of surface fitting methods has been developed for extracting this information accurately from 3-dimensional field data on a grid, as provided by various 3-dimensional finite-element field codes. Based on these realistic field models, Lie or other methods may be used to compute accurate design orbits and accurate transfer maps about these orbits. Part I of this work presents a treatment of straight-axis magnetic elements, while Part II will treat bending dipoles with large sagitta. An exactly-soluble but numerically challenging model field is used to provide a rigorous collection of performance benchmarks.Comment: Accepted to PRST-AB. Changes: minor figure modifications, reference added, typos corrected

    Conditions for spin squeezing in a cold 87Rb ensemble

    Full text link
    We study the conditions for generating spin squeezing via a quantum non-demolition measurement in an ensemble of cold 87Rb atoms. By considering the interaction of atoms in the 5S_{1/2}(F=1) ground state with probe light tuned near the D2 transition, we show that, for large detunings, this system is equivalent to a spin-1/2 system when suitable Zeeman substates and quantum operators are used to define a pseudo-spin. The degree of squeezing is derived for the rubidium system in the presence of scattering causing decoherence and loss. We describe how the system can decohere and lose atoms, and predict as much as 75% spin squeezing for atomic densities typical of optical dipole traps.Comment: 9 pages, 3 figures, submitted to J. Opt. B: Quantum Semiclass. Opt. Proceedings of ICSSUR'0

    Constitutional and environmental factors related to serum lipid and lipoprotein levels

    Get PDF
    Serum lipoproteins and lipids in 657 human males correlated to multiple constitutional and environmental variable

    Galactic Cosmic Ray Origins and OB Associations: Evidence from SuperTIGER Observations of Elements 26_{26}Fe through 40_{40}Zr

    Get PDF
    We report abundances of elements from 26_{26}Fe to 40_{40}Zr in the cosmic radiation measured by the SuperTIGER (Trans-Iron Galactic Element Recorder) instrument during 55 days of exposure on a long-duration balloon flight over Antarctica. These observations resolve elemental abundances in this charge range with single-element resolution and good statistics. These results support a model of cosmic-ray origin in which the source material consists of a mixture of 19−6+11^{+11}_{-6}\% material from massive stars and ∼\sim81\% normal interstellar medium (ISM) material with solar system abundances. The results also show a preferential acceleration of refractory elements (found in interstellar dust grains) by a factor of ∼\sim4 over volatile elements (found in interstellar gas) ordered by atomic mass (A). Both the refractory and volatile elements show a mass-dependent enhancement with similar slopes.Comment: 9 pages, 12 figures, 2 tables, accepted by Ap
    • …
    corecore