8,933 research outputs found
Specific heats of dilute neon inside long single-walled carbon nanotube and related problems
An elegant formula for coordinates of carbon atoms in a unit cell of a
single-walled nanotube (SWNT) is presented and the potential of neon (Ne)
inside an infinitely long SWNT is analytically derived out under the condition
of the Lennard-Jones potential between Ne and carbon atoms.
Specific heats of dilute Ne inside long (20, 20) SWNT are calculated at
different temperatures. It is found that Ne exhibits 3-dimensional (3D) gas
behavior at high temperature but behaves as 2D gas at low temperature.
Especially, at ultra low temperature, Ne inside (20, 20) nanotubes behaves as
lattice gas. A coarse method to determine the characteristic temperature
for low density gas in a potential is put forward. If
, we just need to use the classical statistical
mechanics without solving the Shr\"{o}dinger equation to consider the thermal
behavior of gas in the potential. But if , we
must solve the Shr\"{o}dinger equation. For Ne in (20,20) nanotube, we obtain
K.Comment: 14 pages, 7 figure
A nonextensive entropy approach to solar wind intermittency
The probability distributions (PDFs) of the differences of any physical
variable in the intermittent, turbulent interplanetary medium are scale
dependent. Strong non-Gaussianity of solar wind fluctuations applies for short
time-lag spacecraft observations, corresponding to small-scale spatial
separations, whereas for large scales the differences turn into a Gaussian
normal distribution. These characteristics were hitherto described in the
context of the log-normal, the Castaing distribution or the shell model. On the
other hand, a possible explanation for nonlocality in turbulence is offered
within the context of nonextensive entropy generalization by a recently
introduced bi-kappa distribution, generating through a convolution of a
negative-kappa core and positive-kappa halo pronounced non-Gaussian structures.
The PDFs of solar wind scalar field differences are computed from WIND and ACE
data for different time lags and compared with the characteristics of the
theoretical bi-kappa functional, well representing the overall scale dependence
of the spatial solar wind intermittency. The observed PDF characteristics for
increased spatial scales are manifest in the theoretical distribution
functional by enhancing the only tuning parameter , measuring the
degree of nonextensivity where the large-scale Gaussian is approached for
. The nonextensive approach assures for experimental studies
of solar wind intermittency independence from influence of a priori model
assumptions. It is argued that the intermittency of the turbulent fluctuations
should be related physically to the nonextensive character of the
interplanetary medium counting for nonlocal interactions via the entropy
generalization.Comment: 17 pages, 7 figures, accepted for publication in Astrophys.
Obstructive sleep apnoea in obese adolescents and cardiometabolic risk markers
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT: In paediatric patients, obstructive sleep apnoea is associated with adiposity, especially visceral adiposity. In adults, obstructive sleep apnoea is also associated with a higher prevalence of cardiovascular disease and type 2 diabetes. There are limited and conflicting paediatric studies examining the association between obstructive sleep apnoea and biomarkers of risk for cardiovascular disease and type 2 diabetes in youth.
WHAT THIS STUDY ADDS: Obstructive sleep apnoea is linked with greater cardiometabolic risk markers in obese adolescents. Fasting insulin and homeostasis model assessment-insulin resistance may be especially linked with obstructive sleep apnoea among obese male Hispanic adolescents. The relationship between obstructive sleep apnoea and cardiometabolic abnormalities in obese adolescents should be considered when evaluating patients found to have obstructive sleep apnoea.
BACKGROUND: Paediatric studies examining the association between obstructive sleep apnoea (OSA) and insulin sensitivity/cardiometabolic risk are limited and conflicting.
OBJECTIVE: This study aims to determine if cardiometabolic risk markers are increased among obese youth with obstructive sleep apnoea as compared with their equally obese peers without OSA.
METHODS: We performed a retrospective analysis of 96 patients (age 14.2 ± 1.4 years) who underwent polysomnography for suspected OSA. Fasting lipids, glucose, insulin and haemoglobin A1 c (HbA1 c) were performed as part of routine clinical evaluation. Patients were categorized into two groups by degree of OSA as measured by the apnoea-hypopnoea index (AHI): none or mild OSA (AHI < 5) and moderate or severe OSA (AHI ≥ 5).
RESULTS: Despite the similar degrees of obesity, patients with moderate or severe OSA had higher fasting insulin (P = 0.037) and homeostasis model assessment-insulin resistance (HOMA-IR [P = 0.0497]) as compared with those with mild or no OSA. After controlling for body mass index, there was a positive association between the AHI and log HOMA-IR (P = 0.005). There was a positive relationship between arousals plus awakenings during the polysomnography and fasting triglycerides.
CONCLUSIONS: OSA is linked with greater cardiometabolic risk markers in obese youth
Development of Ferroelectric Order in Relaxor (1-x)Pb(Mg1/3Nb2/3)O3 - xPbTiO3
The microstructure and phase transition in relaxor ferroelectric
Pb(Mg1/3Nb2/3)O3 (PMN) and its solid solution with PbTiO3 (PT), PMN-xPT, remain
to be one of the most puzzling issues of solid state science. In the present
work we have investigated the evolution of the phase symmetry in PMN-xPT
ceramics as a function of temperature (20 K < T < 500 K) and composition (0 <=
x <= 0.15) by means of high-resolution synchrotron x-ray diffraction.
Structural analysis based on the experimental data reveals that the
substitution of Ti^4+ for the complex B-site (Mg1/3Nb2/3)^4+ ions results in
the development of a clean rhombohedral phase at a PT-concentration as low as
5%. The results provide some new insight into the development of the
ferroelectric order in PMN-PT, which has been discussed in light of the
kinetics of polar nanoregions and the physical models of the relaxor
ferroelectrics to illustrate the structural evolution from a relaxor to a
ferroelectric state.Comment: Revised version with updated references; 9 pages, 4 figures embedde
Insulating charge density wave for a half-filled SU(N) Hubbard model with an attractive on-site interaction in one dimension
We study a one-dimensional SU(N) Hubbard model with an attractive on-site
interaction and at half-filling on the bipartite lattice using
density-matrix renormalization-group method and a perturbation theory. We find
that the ground state of the SU(N) Hubbard model is a charge density wave state
with two-fold degeneracy. All the excitations are found to be gapful, resulting
in an insulating ground state, on contrary to that in the SU(2) case. Moreover,
the charge gap is equal to the Cooperon gap, which behaves as
in the strong coupling regime. However, the spin gap and the
quasiparticle gap as well open exponentially in the weak coupling
region, while in the strong coupling region, they linearly depend on such
that and .Comment: 7 pages, 7 figure
Caspase-2 is upregulated after sciatic nerve transection and its inhibition protects dorsal root ganglion neurons from Apoptosis after serum withdrawal
Sciatic nerve (SN) transection-induced apoptosis of dorsal root ganglion neurons (DRGN) is one factor determining the efficacy of peripheral axonal regeneration and the return of sensation. Here, we tested the hypothesis that caspase-2(CASP2) orchestrates apoptosis of axotomised DRGN both in vivo and in vitro by disrupting the local neurotrophic supply to DRGN. We observed significantly elevated levels of cleaved CASP2 (C-CASP2), compared to cleaved caspase-3 (C-CASP3), within TUNEL+DRGN and DRG glia (satellite and Schwann cells) after SN transection. A serum withdrawal cell culture model, which induced 40% apoptotic death in DRGN and 60% in glia, was used to model DRGN loss after neurotrophic factor withdrawal. Elevated C-CASP2 and TUNEL were observed in both DRGN and DRG glia, with C-CASP2 localisation shifting from the cytosol to the nucleus, a required step for induction of direct CASP2-mediated apoptosis. Furthermore, siRNAmediated downregulation of CASP2 protected 50% of DRGN from apoptosis after serum withdrawal, while downregulation of CASP3 had no effect on DRGN or DRG glia survival. We conclude that CASP2 orchestrates the death of SN-axotomised DRGN directly and also indirectly through loss of DRG glia and their local neurotrophic factor support. Accordingly, inhibiting CASP2 expression is a potential therapy for improving both the SN regeneration response and peripheral sensory recovery
Width Distributions and the Upper Critical Dimension of KPZ Interfaces
Simulations of restricted solid-on-solid growth models are used to build the
width-distributions of d=2-5 dimensional KPZ interfaces. We find that the
universal scaling function associated with the steady-state width-distribution
changes smoothly as d is increased, thus strongly suggesting that d=4 is not an
upper critical dimension for the KPZ equation. The dimensional trends observed
in the scaling functions indicate that the upper critical dimension is at
infinity.Comment: 4 pages, 4 postscript figures, RevTe
Bounds on the cosmogenic neutrino flux
Under the assumption that some part of the observed highest energy cosmic
rays consists of protons originating from cosmological distances, we derive
bounds on the associated flux of neutrinos generated by inelastic processes
with the cosmic microwave background photons. We exploit two methods. First, a
power-like injection spectrum is assumed. Then, a model-independent technique,
based on the inversion of the observed proton flux, is presented. The inferred
lower bound is quite robust. As expected, the upper bound depends on the
unknown composition of the highest energy cosmic rays. Our results represent
benchmarks for all ultrahigh energy neutrino telescopes.Comment: 12 pages, 6 figure
Bichromatic electromagnetically induced transparency in cold rubidium atoms
In a three-level atomic system coupled by two equal-amplitude laser fields
with a frequency separation 2, a weak probe field exhibits a
multiple-peaked absorption spectrum with a constant peak separation .
The corresponding probe dispersion exhibits steep normal dispersion near the
minimum absorption between the multiple absorption peaks, which leads to
simultaneous slow group velocities for probe photons at multiple frequencies
separated by . We report an experimental study in such a
bichromatically coupled three-level system in cold Rb atoms.
The multiple-peaked probe absorption spectra under various experimental
conditions have been observed and compared with the theoretical calculations.Comment: RevTex, 4 pages, 6 figures, Email address: [email protected]
Hidden Sp(2s+1)- or SO(2s+1)-symmetry and new exactly solvable models in ultracold atomic systems
The high spin ultracold atom models with a special form of contact
interactions, i.e., the scattering lengthes in the total spin-
channels are equal but may be different from that in the spin-0 channel, is
studied. It is found that those models have either -symmetry for the
fermions or -symmetry for the bosons in the spin sector. Based on the
symmetry analysis, a new class of exactly solvable models is proposed and
solved via the Bethe ansatz. The ground states for repulsive fermions are also
discussed.Comment: 6 pages, 2 figure
- …