17,147 research outputs found

    Mounting technique for pressure transducers minimizes measurement interferences

    Get PDF
    Miniaturized transducers are fabricated from commercially available four-arm semiconductor gages; transducers are connected as bridge circuit and mounted on internal face of small diaphragm. Jacket made of conductive plastic may be needed to avoid buildup or static charges

    Stellar structures in the outer regions of M33

    Full text link
    We present Subaru/Suprime-Cam deep V and I imaging of seven fields in the outer regions of M33. Our aim is to search for stellar structures corresponding to extended HI clouds found in a recent 21-cm survey of the galaxy. Three fields probe a large HI complex to the southeastern (SE) side of the galaxy. An additional three fields cover the northwestern (NW) side of the galaxy along the HI warp. A final target field was chosen further north, at a projected distance of approximately 25 kpc, to study part of the large stellar plume recently discovered around M33. We analyse the stellar population at R > 10 kpc by means of V, I colour magnitude diagrams reaching the red clump. Evolved stellar populations are found in all fields out to 120' (~ 30 kpc), while a diffuse population of young stars (~ 200 Myr) is detected out to a galactocentric radius of 15 kpc. The mean metallicity in the southern fields remains approximately constant at [M/H] = -0.7 beyond the edge of the optical disc, from 40' out to 80'. Along the northern fields probing the outer \hi disc, we also find a metallicity of [M/H] = -0.7 between 35' and 70' from the centre, which decreases to [M/H] = -1.0 at larger angular radii out to 120'. In the northernmost field, outside the disc extent, the stellar population of the large stellar feature possibly related to a M33-M31 interaction is on average more metal-poor ([M/H] = -1.3) and older (> 6 Gyr). An exponential disc with a large scale-length (~ 7 kpc) fits well the average distribution of stars detected in both the SE and NW regions from a galactocentric distance of 11 kpc out to 30 kpc. The stellar distribution at large radii is disturbed and, although there is no clear correlation between the stellar substructures and the location of the HI clouds, this gives evidence for tidal interaction or accretion events.Comment: 13 pages, 13 figures. Accepted for publications in Astronomy and Astrophysics; minor revisions of the tex

    Unified Analysis of Cosmological Perturbations in Generalized Gravity

    Full text link
    In a class of generalized Einstein's gravity theories we derive the equations and general asymptotic solutions describing the evolution of the perturbed universe in unified forms. Our gravity theory considers general couplings between the scalar field and the scalar curvature in the Lagrangian, thus includes broad classes of generalized gravity theories resulting from recent attempts for the unification. We analyze both the scalar-type mode and the gravitational wave in analogous ways. For both modes the large scale evolutions are characterized by the same conserved quantities which are valid in the Einstein's gravity. This unified and simple treatment is possible due to our proper choice of the gauges, or equivalently gauge invariant combinations.Comment: 4 pages, revtex, no figure

    Relativistic Hydrodynamic Cosmological Perturbations

    Get PDF
    Relativistic cosmological perturbation analyses can be made based on several different fundamental gauge conditions. In the pressureless limit the variables in certain gauge conditions show the correct Newtonian behaviors. Considering the general curvature (KK) and the cosmological constant (Λ\Lambda) in the background medium, the perturbed density in the comoving gauge, and the perturbed velocity and the perturbed potential in the zero-shear gauge show the same behavior as the Newtonian ones in general scales. In the first part, we elaborate these Newtonian correspondences. In the second part, using the identified gauge-invariant variables with correct Newtonian correspondences, we present the relativistic results with general pressures in the background and perturbation. We present the general super-sound-horizon scale solutions of the above mentioned variables valid for general KK, Λ\Lambda, and generally evolving equation of state. We show that, for vanishing KK, the super-sound-horizon scale evolution is characterised by a conserved variable which is the perturbed three-space curvature in the comoving gauge. We also present equations for the multi-component hydrodynamic situation and for the rotation and gravitational wave.Comment: 16 pages, no figure, To appear in Gen. Rel. Gra

    Collective charge density fluctuations in superconducting layered systems with bilayer unit cells

    Full text link
    Collective modes of bilayered superconducting superlattices (e.g., YBCO) are investigated within the conserving gauge-invariant ladder diagram approximation including both the nearest interlayer single electron tunneling and the Josephson-type Cooper pair tunneling. By calculating the density-density response function including Coulomb and pairing interactions, we examine the two collective mode branches corresponding to the in-phase and out-of-phase charge fluctuations between the two layers in the unit cell. The out-of-phase collective mode develops a long wavelength plasmon gap whose magnitude depends on the tunneling strength with the mode dispersions being insensitive to the specific tunneling mechanism (i.e., single electron or Josephson). We also show that in the presence of tunneling the oscillator strength of the out-of-phase mode overwhelms that of the in-phase-mode at k=0k_{\|} = 0 and finite kzk_z, where kzk_z and kk_{\|} are respectively the mode wave vectors perpendicular and along the layer. We discuss the possible experimental observability of the phase fluctuation modes in the context of our theoretical results for the mode dispersion and spectral weight.Comment: 9 pages, 3 figure

    Transport properties of diluted magnetic semiconductors: Dynamical mean field theory and Boltzmann theory

    Full text link
    The transport properties of diluted magnetic semiconductors (DMS) are calculated using dynamical mean field theory (DMFT) and Boltzmann transport theory. Within DMFT we study the density of states and the dc-resistivity, which are strongly parameter dependent such as temperature, doping, density of the carriers, and the strength of the carrier-local impurity spin exchange coupling. Characteristic qualitative features are found distinguishing weak, intermediate, and strong carrier-spin coupling and allowing quantitative determination of important parameters defining the underlying ferromagnetic mechanism. We find that spin-disorder scattering, formation of bound state, and the population of the minority spin band are all operational in DMFT in different parameter range. We also develop a complementary Boltzmann transport theory for scattering by screened ionized impurities. The difference in the screening properties between paramagnetic (T>TcT>T_c) and ferromagnetic (T<TcT<T_c) states gives rise to the temperature dependence (increase or decrease) of resistivity, depending on the carrier density, as the system goes from the paramagnetic phase to the ferromagnetic phase. The metallic behavior below TcT_c for optimally doped DMS samples can be explained in the Boltzmann theory by temperature dependent screening and thermal change of carrier spin polarization.Comment: 15 pages, 15 figure

    Cosmological Perturbations with Multiple Fluids and Fields

    Get PDF
    We consider the evolution of perturbed cosmological spacetime with multiple fluids and fields in Einstein gravity. Equations are presented in gauge-ready forms, and are presented in various forms using the curvature (\Phi or \phi_\chi) and isocurvature (S_{(ij)} or \delta \phi_{(ij)}) perturbation variables in the general background with K and \Lambda. We clarify the conditions for conserved curvature and isocurvature perturbations in the large-scale limit. Evolutions of curvature perturbations in many different gauge conditions are analysed extensively. In the multi-field system we present a general solution to the linear order in slow-roll parameters.Comment: 19 pages, 6 figures, revised thoroughly; published version in Class. Quant. Gra

    Dynamic behavior of driven interfaces in models with two absorbing states

    Full text link
    We study the dynamics of an interface (active domain) between different absorbing regions in models with two absorbing states in one dimension; probabilistic cellular automata models and interacting monomer-dimer models. These models exhibit a continuous transition from an active phase into an absorbing phase, which belongs to the directed Ising (DI) universality class. In the active phase, the interface spreads ballistically into the absorbing regions and the interface width diverges linearly in time. Approaching the critical point, the spreading velocity of the interface vanishes algebraically with a DI critical exponent. Introducing a symmetry-breaking field hh that prefers one absorbing state over the other drives the interface to move asymmetrically toward the unpreferred absorbing region. In Monte Carlo simulations, we find that the spreading velocity of this driven interface shows a discontinuous jump at criticality. We explain that this unusual behavior is due to a finite relaxation time in the absorbing phase. The crossover behavior from the symmetric case (DI class) to the asymmetric case (directed percolation class) is also studied. We find the scaling dimension of the symmetry-breaking field yh=1.21(5)y_h = 1.21(5).Comment: 5 pages, 5 figures, Revte

    Transport and percolation in a low-density high-mobility two-dimensional hole system

    Full text link
    We present a study of the temperature and density dependence of the resistivity of an extremely high quality two-dimensional hole system grown on the (100) surface of GaAs. For high densities in the metallic regime (p\agt 4 \times 10^{9} cm2^{-2}), the nonmonotonic temperature dependence (50300\sim 50-300 mK) of the resistivity is consistent with temperature dependent screening of residual impurities. At a fixed temperature of TT= 50 mK, the conductivity vs. density data indicates an inhomogeneity driven percolation-type transition to an insulating state at a critical density of 3.8×1093.8\times 10^9 cm2^{-2}.Comment: accepted for publication in PR

    COBE constraints on inflation models with a massive non-minimal scalar field

    Get PDF
    We derive power spectra of the scalar- and tensor-type structures generated in an inflation model based on a massive non-minimally coupled scalar field with the strong coupling assumption. We make analyses in both the original-frame and the conformally transformed Einstein-frame. We derive contributions of both structures to the anisotropy of the cosmic microwave background radiation, and compare the contributions with the four-year COBE-DMR data. Previous study showed that sufficient amount of inflation requires a small coupling parameter. In such a case the spectra become near Zeldovich spectra, and the gravitational wave contribution becomes negligible compared with the scalar-type contribution which is testable in future CMBR experiments.Comment: 4 pages, no figure, To appear in Phys. Rev.
    corecore