8,833 research outputs found

    Hamiltonian and measuring time for analog quantum search

    Full text link
    We derive in this study a Hamiltonian to solve with certainty the analog quantum search problem analogue to the Grover algorithm. The general form of the initial state is considered. Since the evaluation of the measuring time for finding the marked state by probability of unity is crucially important in the problem, especially when the Bohr frequency is high, we then give the exact formula as a function of all given parameters for the measuring time.Comment: 5 page

    A V-Diagram for the Design of Integrated Health Management for Unmanned Aerial Systems

    Get PDF
    Designing Integrated Vehicle Health Management (IVHM) for Unmanned Aerial Systems (UAS) is inherently complex. UAS are a system of systems (SoS) and IVHM is a product-service, thus the designer has to take into account many factors, such as: the design of the other systems of the UAS (e.g. engines, structure, communications), the split of functions between elements of the UAS, the intended operation/mission of the UAS, the cost verses benefit of monitoring a system/component/part, different techniques for monitoring the health of the UAS, optimizing the health of the fleet and not just the individual UAS, amongst others. The design of IVHM cannot sit alongside, or after, the design of UAS, but itself be integrated into the overall design to maximize IVHM’s potential. Many different methods exist to help design complex products and manage the process. One method used is the V-diagram which is based on three concepts: decomposition & definition; integration & testing; and verification & validation. This paper adapts the V-diagram so that it can be used for designing IVHM for UAS. The adapted v-diagram splits into different tracks for the different system elements of the UAS and responses to health states (decomposition and definition). These tracks are then combined into an overall IVHM provision for the UAS (integration and testing), which can be verified and validated. The stages of the adapted V-diagram can easily be aligned with the stages of the V-diagram being used to design the UAS bringing the design of the IVHM in step with the overall design process. The adapted V-diagram also allows the design IVHM for a UAS to be broken down in to smaller tasks which can be assigned to people/teams with the relevant competencies. The adapted V-diagram could also be used to design IVHM for other SoS and other vehicles or products

    PAMELA's cosmic positron from decaying LSP in SO(10) SUSY GUT

    Full text link
    We propose two viable scenarios explaining the recent observations on cosmic positron excess. In both scenarios, the present relic density in the Universe is assumed to be still supported by thermally produced WIMP or LSP (\chi). One of the scenarios is based on two dark matter (DM) components (\chi,X) scenario, and the other is on SO(10) SUSY GUT. In the two DM components scenario, extremely small amount of non-thermally produced meta-stable DM component [O(10^{-10}) < n_X /n_\chi] explains the cosmic positron excess. In the SO(10) model, extremely small R-parity violation for LSP decay to e^\pm is naturally achieved with a non-zero VEV of the superpartner of one right-handed neutrino (\tilde{\nu}^c) and a global symmetry.Comment: 6 pages, Talks presented in PASCOS, SUSY, and COSMO/CosPA in 201

    Extending the Real-Time Maude Semantics of Ptolemy to Hierarchical DE Models

    Full text link
    This paper extends our Real-Time Maude formalization of the semantics of flat Ptolemy II discrete-event (DE) models to hierarchical models, including modal models. This is a challenging task that requires combining synchronous fixed-point computations with hierarchical structure. The synthesis of a Real-Time Maude verification model from a Ptolemy II DE model, and the formal verification of the synthesized model in Real-Time Maude, have been integrated into Ptolemy II, enabling a model-engineering process that combines the convenience of Ptolemy II DE modeling and simulation with formal verification in Real-Time Maude.Comment: In Proceedings RTRTS 2010, arXiv:1009.398

    Definition of valid proteomic biomarkers: a bayesian solution

    Get PDF
    Clinical proteomics is suffering from high hopes generated by reports on apparent biomarkers, most of which could not be later substantiated via validation. This has brought into focus the need for improved methods of finding a panel of clearly defined biomarkers. To examine this problem, urinary proteome data was collected from healthy adult males and females, and analysed to find biomarkers that differentiated between genders. We believe that models that incorporate sparsity in terms of variables are desirable for biomarker selection, as proteomics data typically contains a huge number of variables (peptides) and few samples making the selection process potentially unstable. This suggests the application of a two-level hierarchical Bayesian probit regression model for variable selection which assumes a prior that favours sparseness. The classification performance of this method is shown to improve that of the Probabilistic K-Nearest Neighbour model

    Mean field baryon magnetic moments and sumrules

    Full text link
    New developments have spurred interest in magnetic moments (μ\mu-s) of baryons. The measurement of some of the decuplet μ\mu-s and the findings of new sumrules from various methods are partly responsible for this renewed interest. Our model, inspired by large colour approximation, is a relativistic self consistent mean field description with a modified Richardson potential and is used to describe the μ\mu-s and masses of all baryons with up (u), down (d) and strange (s) quarks. We have also checked the validity of the Franklin sumrule (referred to as CGSR in the literature) and sumrules of Luty, March-Russell and White. We found that our result for sumrules matches better with experiment than the non-relativistic quark model prediction. We have also seen that quark magnetic moments depend on the baryon in which they belong while the naive quark model expects them to be constant.Comment: 7 pages, no figure, uses epl.cl

    Formal Model Engineering for Embedded Systems Using Real-Time Maude

    Full text link
    This paper motivates why Real-Time Maude should be well suited to provide a formal semantics and formal analysis capabilities to modeling languages for embedded systems. One can then use the code generation facilities of the tools for the modeling languages to automatically synthesize Real-Time Maude verification models from design models, enabling a formal model engineering process that combines the convenience of modeling using an informal but intuitive modeling language with formal verification. We give a brief overview six fairly different modeling formalisms for which Real-Time Maude has provided the formal semantics and (possibly) formal analysis. These models include behavioral subsets of the avionics modeling standard AADL, Ptolemy II discrete-event models, two EMF-based timed model transformation systems, and a modeling language for handset software.Comment: In Proceedings AMMSE 2011, arXiv:1106.596

    Electron affinity of Li: A state-selective measurement

    Get PDF
    We have investigated the threshold of photodetachment of Li^- leading to the formation of the residual Li atom in the 2p2P2p ^2P state. The excited residual atom was selectively photoionized via an intermediate Rydberg state and the resulting Li^+ ion was detected. A collinear laser-ion beam geometry enabled both high resolution and sensitivity to be attained. We have demonstrated the potential of this state selective photodetachment spectroscopic method by improving the accuracy of Li electron affinity measurements an order of magnitude. From a fit to the Wigner law in the threshold region, we obtained a Li electron affinity of 0.618 049(20) eV.Comment: 5 pages,6 figures,22 reference

    TeV scale partial mirage unification and neutralino dark matter

    Full text link
    We study the TeV scale partial mirage unification scenario, where the gluino and wino masses are degenerate around a TeV scale, but the bino mass is not degenerate. This scenario has phenomenologically interesting aspects. First, because of the degeneracy between the gluino and wino masses, this scenario does not have the little hierarchy problem, that is, the higgisino mass is around 150 GeV. The lightest superparticle is a mixture of the bino and higgsino, and can lead to a right amount of thermal relic density as a dark matter candidate
    corecore