1,270 research outputs found

    Proximity effect thermometer for local temperature measurements on mesoscopic samples

    Full text link
    Using the strong temperature dependent resistance of a normal metal wire in proximity to a superconductor, we have been able to measure the local temperature of electrons heated by flowing a dc current in a metallic wire to within a few tens of millikelvin at low temperatures. By placing two such thermometers at different parts of a sample, we have been able to measure the temperature difference induced by a dc current flowing in the sample. This technique may provide a flexible means of making quantitative thermal and thermoelectric measurements on mesoscopic metallic samples

    Theoretical studies of the kinetics of mechanical unfolding of cross-linked polymer chains and their implications for single molecule pulling experiments

    Full text link
    We have used kinetic Monte Carlo simulations to study the kinetics of unfolding of cross-linked polymer chains under mechanical loading. As the ends of a chain are pulled apart, the force transmitted by each crosslink increases until it ruptures. The stochastic crosslink rupture process is assumed to be governed by first order kinetics with a rate that depends exponentially on the transmitted force. We have performed random searches to identify optimal crosslink configurations whose unfolding requires a large applied force (measure of strength) and/or large dissipated energy (measure of toughness). We found that such optimal chains always involve cross-links arranged to form parallel strands. The location of those optimal strands generally depends on the loading rate. Optimal chains with a small number of cross-links were found to be almost as strong and tough as optimal chains with a large number of cross-links. Furthermore, optimality of chains with a small number of cross-links can be easily destroyed by adding cross-links at random. The present findings are relevant for the interpretation of single molecule force probe spectroscopy studies of the mechanical unfolding of load-bearing proteins, whose native topology often involves parallel strand arrangements similar to the optimal configurations identified in the study

    Electrodynamics of superconducting pnictide superlattices

    Full text link
    It has been recently reported (S. Lee et al., Nature Materials 12, 392, 2013) that superlattices where layers of the 8% Co-doped BaFe2As2 superconducting pnictide are intercalated with non superconducting ultrathin layers of either SrTiO3 or of oxygen-rich BaFe2As2, can be used to control flux pinning, thereby increasing critical fields and currents, without significantly affecting the critical temperature of the pristine superconducting material. However, little is known about the electron properties of these systems. Here we investigate the electrodynamics of these superconducting pnictide superlattices in the normal and superconducting state by using infrared reflectivity, from THz to visible range. We find that multi-gap structure of these superlattices is preserved, whereas some significant changes are observed in their electronic structure with respect to those of the original pnictide. Our results suggest that possible attempts to further increase the flux pinning may lead to a breakdown of the pnictide superconducting properties.Comment: 4 pages, two figure

    Conductance asymmetry in point-contacts on epitaxial thin films of Ba(Fe0.92_{0.92}Co0.08_{0.08})2_2As2_2

    Full text link
    Point-contact spectroscopy is a powerful tool for probing superconductors. One of the most common observations in the point-contact spectra on the recently discovered ferropnictide superconductors is a large conductance asymmetry with respect to voltage across the point-contact. In this paper we show that the antisymmetric part of the point-contact spectrum between a silver tip and an epitaxial thin film of Ba(Fe0.92_{0.92}Co0.08_{0.08})2_2As2_2 shows certain unique features. These features have an interesting evolution with increasing temperature up to a temperature that is 30% larger than the critical temperature TcT_c of the superconductor. We argue that this evolution can be associated with the rich normal state properties of these materials.Comment: 4 pages, 2 figure

    Improved Hc2 in Bulk-Form Magnesium Diboride by Mechanical Alloying With Carbon

    Full text link
    High energy milling of MgB2 pre-reacted powder renders the material largely amorphous through extreme mechanical deformation and is suitable for mechanically alloying MgB2 with dopants including carbon. Bulk samples of milled C and MgB2 powders subjected to hot isostatic pressing and Mg vapor annealing have achieved critical fields in excess of 32T and critical current density approaching 10^6 A/cm^2.Comment: 13 pages, 3 figures references updated, typos corrected, numerical error correcte

    Layer charge instability in unbalanced bilayer systems in the quantum Hall regime

    Full text link
    Measurements in GaAs hole bilayers with unequal layer densities reveal a pronounced magneto-resistance hysteresis at the magnetic field positions where either the majority or minority layer is at Landau level filling factor one. At a fixed field in the hysteretic regions, the resistance exhibits an unusual time dependence, consisting of random, bidirectional jumps followed by slow relaxations. These anomalies are apparently caused by instabilities in the charge distribution of the two layers.Comment: 4 pages, 4 figure

    Oxide two-dimensional electron gas with high mobility at room-temperature

    Get PDF
    The prospect of 2‐dimensional electron gases (2DEGs) possessing high mobility at room temperature in wide‐bandgap perovskite stannates is enticing for oxide electronics, particularly to realize transparent and high‐electron mobility transistors. Nonetheless only a small number of studies to date report 2DEGs in BaSnO(3)‐based heterostructures. Here, 2DEG formation at the LaScO(3)/BaSnO(3) (LSO/BSO) interface with a room‐temperature mobility of 60 cm(2) V(−1) s(−1) at a carrier concentration of 1.7 × 10(13) cm(–2) is reported. This is an order of magnitude higher mobility at room temperature than achieved in SrTiO(3)‐based 2DEGs. This is achieved by combining a thick BSO buffer layer with an ex situ high‐temperature treatment, which not only reduces the dislocation density but also produces a SnO(2)‐terminated atomically flat surface, followed by the growth of an overlying BSO/LSO interface. Using weak beam dark‐field transmission electron microscopy imaging and in‐line electron holography technique, a reduction of the threading dislocation density is revealed, and direct evidence for the spatial confinement of a 2DEG at the BSO/LSO interface is provided. This work opens a new pathway to explore the exciting physics of stannate‐based 2DEGs at application‐relevant temperatures for oxide nanoelectronics
    corecore