424 research outputs found
Quenched lattice calculation of the B --> D l nu decay rate
We calculate, in the continuum limit of quenched lattice QCD, the form factor
that enters in the decay rate of the semileptonic decay B --> D l nu. Making
use of the step scaling method (SSM), previously introduced to handle two scale
problems in lattice QCD, and of flavour twisted boundary conditions we extract
G(w) at finite momentum transfer and at the physical values of the heavy quark
masses. Our results can be used in order to extract the CKM matrix element Vcb
by the experimental decay rate without model dependent extrapolations.Comment: 5 pages, 4 figures, accepted for publication on Phys. Lett. B,
corrected one typ
Hadronic Decays of Excited Heavy Mesons
We studied the hadronic decays of excited states of heavy mesons (D, D_s, B
and B_s) to lighter states by emission of pi, eta or K. Wavefunctions and
energy levels of these excited states are determined using a Dirac equation for
the light quark in the potential generated by the heavy quark (including first
order corrections in the heavy quark expansion). Transition amplitudes are
computed in the context of the Heavy Chiral Quark Model.Comment: 4 pages (incl. figures), proceedings of the IV International
Conference on "Hyperons, Charm and Beauty Hadrons", Valencia (Spain
The three-loop beta function of SU(N) lattice gauge theories with Wilson fermions
We calculate the third coefficient of the lattice beta function associated
with the Wilson formulation for both gauge fields and fermions. This allows us
to evaluate the three-loop correction (linear in ) to the relation
between the lattice Lambda-parameter and the bare coupling , which is
important in order to verify asymptotic scaling predictions. Our calculation
also leads to the two-loop relation between the coupling renormalized in the
MSbar scheme and .
The original version of this paper contained a numerical error in one of the
diagrams, which has now been corrected. The calculations, as well as the layout
of the paper have remained identical, but there are some important changes in
the numerical results.Comment: One 14-page LaTeX file, one PostScript file containing 2 figures.
Corrected a numerical error in one of the diagrams. The calculations, as well
as the layout of the paper have remained unaffected, but there are some
important changes in the numerical result
Developments and new applications of numerical stochastic perturbation theory
A review of new developments in numerical stochastic perturbation theory
(NSPT) is presented. In particular, the status of the extension of the method
to gauge fixed lattice QCD is reviewed and a first application to compact
(scalar) QED is presented. Lacking still a general proof of the convergence of
the underlying stochastic processes, a self-consistent method for testing the
results is discussed.Comment: 3 pages, 1 figure. Poster presented at the Lattice97 conference,
Edinburgh, U
Improved Pseudofermion Approach for All-Point Propagators
Quark propagators with arbitrary sources and sinks can be obtained more
efficiently using a pseudofermion method with a mode-shifted action.
Mode-shifting solves the problem of critical slowing down (for light quarks)
induced by low eigenmodes of the Dirac operator. The method allows the full
physical content of every gauge configuration to be extracted, and should be
especially helpful for unquenched QCD calculations. The method can be applied
for all the conventional quark actions: Wilson, Sheikoleslami-Wohlert,
Kogut-Susskind, as well as Ginsparg-Wilson compliant overlap actions. The
statistical properties of the method are examined and examples of physical
processes under study are presented.Comment: LateX, 26 pages, 10 eps figure
Heavy-Meson Observables at One-Loop in Partially Quenched Chiral Perturbation Theory
I present one-loop level calculations of the Isgur-Wise functions for B ->
D^{(*)} + e + nu, of the matrix elements of isovector twist-2 operators in B
and D mesons, and the matrix elements for the radiative decays D^* -> D + gamma
in partially quenched heavy quark chiral perturbation theory. Such expressions
are required in order to extrapolate from the light quark masses used in
lattice simulations of the foreseeable future to those of nature.Comment: 13 pages, 3 fig
Higgs mediated flavor violating top quark decays t --> u_i H, u_i gamma, u_i gamma gamma, and the process gamma gamma --> t c in effective theories
The rare top quark couplings and ()
induced at the one-loop level by a flavor violating vertex are studied
within the context of an effective Yukawa sector that incorporates
-invariant operators of up to dimension six. Data on the
recently observed mixing are employed to constrain the
vertex, which is then used to predict the , , and decays, as well as the reaction in the context of the ILC. It is found that
the and decays can reach sizable branching
ratios as high as and , respectively. As for the
decay, it can have a branching ratio of that
is about 6 orders of magnitude larger than the standard model prediction,
which, however, is still very small to be detected. As for production, it
is found that, due to the presence of a resonant effect in the convoluted cross
section , about events may be produced at the ILC for a value of the
Higgs mass near to the top mass.Comment: 5 pages and 3 figure
Brief review on semileptonic B decays
We concisely review semileptonic B decays, focussing on recent progress on
both theoretical and experimental sides.Comment: 18 pages, 2 figures; version to be published in Mod. Phys. Lett.
Flavor changing t -> c l_1^- l_2^+ decay in the general two Higgs doublet model
We study the flavor changing t-> c l_1^- l_2^+ decay in the framework of the
general two Higgs doublet model, the so called model III. We predict the
branching ratio for l_1=\tau, l_2=\mu at the order of magnitude of BR \sim
10^{-8}.Comment: 12 Pages, 5 Figure
Form Factors from QCD Light-Cone Sum Rules
We derive new QCD sum rules for and form factors. The
underlying correlation functions are expanded near the light-cone in terms of
-meson distribution amplitudes defined in HQET, whereas the -quark mass
is kept finite. The leading-order contributions of two- and three-particle
distribution amplitudes are taken into account. From the resulting light-cone
sum rules we calculate all B\to \Dst form factors in the region of small
momentum transfer (maximal recoil). In the infinite heavy-quark mass limit the
sum rules reduce to a single expression for the Isgur-Wise function. We compare
our predictions with the form factors extracted from experimental B\to \Dst l
\nu_l decay rates fitted to dispersive parameterizations.Comment: 20 pages, 6 figures; one reference, one figure and several comments
added; version to appear in European Physical Journal
- âŠ