41,478 research outputs found

    Smile4life:The oral health of homeless people across Scotland

    Get PDF

    Observing the evaporation transition in vibro-fluidized granular matter

    Full text link
    By shaking a sand box the grains on the top start to jump giving the picture of evaporating a sand bulk, and a gaseous transition starts at the surface granular matter (GM) bed. Moreover the mixture of the grains in the whole bed starts to move in a cooperative way which is far away from a Brownian description. In a previous work we have shown that the key element to describe the statistics of this behavior is the exclusion of volume principle, whereby the system obeys a Fermi configurational approach. Even though the experiment involves an archetypal non-equilibrium system, we succeeded in defining a global temperature, as the quantity associated to the Lagrange parameter in a maximum entropic statistical description. In fact in order to close our approach we had to generalize the equipartition theorem for dissipative systems. Therefore we postulated, found and measured a fundamental dissipative parameter, written in terms of pumping and gravitational energies, linking the configurational entropy to the collective response for the expansion of the centre of mass (c.m.) of the granular bed. Here we present a kinetic approach to describe the experimental velocity distribution function (VDF) of this non-Maxwellian gas of macroscopic Fermi-like particles (mFp). The evaporation transition occurs mainly by jumping balls governed by the excluded volume principle. Surprisingly in the whole range of low temperatures that we measured this description reveals a lattice-gas, leading to a packing factor, which is independent of the external parameters. In addition we measure the mean free path, as a function of the driving frequency, and corroborate our prediction from the present kinetic theory.Comment: 6 pages, 4 figures, submitted for publication September 1st, 200

    Zenithal bistability in a nematic liquid crystal device with a monostable surface condition

    Get PDF
    The ground-state director configurations in a grating-aligned, zenithally bistable nematic device are calculated in two dimensions using a Q tensor approach. The director profiles generated are well described by a one-dimensional variation of the director across the width of the device, with the distorted region near the grating replaced by an effective surface anchoring energy. This work shows that device bistability can in fact be achieved by using a monostable surface term in the one-dimensional model. This implies that is should be possible to construct a device showing zenithal bistability without the need for a micropatterned surface

    Exotic and excited-state radiative transitions in charmonium from lattice QCD

    Full text link
    We compute, for the first time using lattice QCD methods, radiative transition rates involving excited charmonium states, states of high spin and exotics. Utilizing a large basis of interpolating fields we are able to project out various excited state contributions to three-point correlators computed on quenched anisotropic lattices. In the first lattice QCD calculation of the exotic 1-+ eta_c1 radiative decay, we find a large partial width Gamma(eta_c1 -> J/psi gamma) ~ 100 keV. We find clear signals for electric dipole and magnetic quadrupole transition form factors in chi_c2 -> J/psi gamma, calculated for the first time in this framework, and study transitions involving excited psi and chi_c1,2 states. We calculate hindered magnetic dipole transition widths without the sensitivity to assumptions made in model studies and find statistically significant signals, including a non-exotic vector hybrid candidate Y_hyb? -> eta_c gamma. As well as comparison to experimental data, we discuss in some detail the phenomenology suggested by our results and the extent to which it mirrors that of quark potential models and make suggestions for the interpretation of our results involving exotic quantum numbered states

    Spiral vortices traveling between two rotating defects in the Taylor-Couette system

    Full text link
    Numerical calculations of vortex flows in Taylor-Couette systems with counter rotating cylinders are presented. The full, time dependent Navier-Stokes equations are solved with a combination of a finite difference and a Galerkin method. Annular gaps of radius ratio η=0.5\eta=0.5 and of several heights are simulated. They are closed by nonrotating lids that produce localized Ekman vortices in their vicinity and that prevent axial phase propagation of spiral vortices. Existence and spatio temporal properties of rotating defects, of modulated Ekman vortices, and of the spiral vortex structures in the bulk are elucidated in quantitative detail.Comment: 9 pages, 9 figure

    Are Topological Charge Fluctuations in QCD Instanton Dominated?

    Get PDF
    We consider a recent proposal by Horv\'ath {\em et al.} to address the question whether topological charge fluctuations in QCD are instanton dominated via the response of fermions using lattice fermions with exact chiral symmetry, the overlap fermions. Considering several volumes and lattice spacings we find strong evidence for chirality of a finite density of low-lying eigenvectors of the overlap-Dirac operator in the regions where these modes are peaked. This result suggests instanton dominance of topological charge fluctuations in quenched QCD.Comment: LaTeX, 15 pages, 8 postscript figures, minor improvements, version to appear in PR

    Space VLBI Observations of 3C 279 at 1.6 and 5 GHz

    Get PDF
    We present the first VLBI Space Observatory Programme (VSOP) observations of the gamma-ray blazar 3C 279 at 1.6 and 5 GHz. The combination of the VSOP and VLBA-only images at these two frequencies maps the jet structure on scales from 1 to 100 mas. On small angular scales the structure is dominated by the quasar core and the bright secondary component `C4' located 3 milliarcseconds from the core (at this epoch). On larger angular scales the structure is dominated by a jet extending to the southwest, which at the largest scale seen in these images connects with the smallest scale structure seen in VLA images. We have exploited two of the main strengths of VSOP: the ability to obtain matched-resolution images to ground-based images at higher frequencies and the ability to measure high brightness temperatures. A spectral index map was made by combining the VSOP 1.6 GHz image with a matched-resolution VLBA-only image at 5 GHz from our VSOP observation on the following day. The spectral index map shows the core to have a highly inverted spectrum, with some areas having a spectral index approaching the limiting value for synchrotron self-absorbed radiation of 2.5. Gaussian model fits to the VSOP visibilities revealed high brightness temperatures (>10^{12} K) that are difficult to measure with ground-only arrays. An extensive error analysis was performed on the brightness temperature measurements. Most components did not have measurable brightness temperature upper limits, but lower limits were measured as high as 5x10^{12} K. This lower limit is significantly above both the nominal inverse Compton and equipartition brightness temperature limits. The derived Doppler factor, Lorentz factor, and angle to the line-of-sight in the case of the equipartition limit are at the upper end of the range of expected values for EGRET blazars.Comment: 11 pages, 6 figures, emulateapj.sty, To be published in The Astrophysical Journal, v537, Jul 1, 200

    Dispersion of Ripplons in Superfluid 4he

    Full text link
    A detailed study of the dispersion law of surface excitations in liquid \hef at zero temperature is presented, with special emphasis to the short wave length region. The hybridization mechanism between surface and bulk modes is discussed on a general basis, investigating the scattering of slow rotons from the surface. An accurate density functional, accounting for backflow effects, is then used to determine the dispersion of both bulk and surface excitations. The numerical results are close to the experimental data obtained on thick films and explicitly reveal the occurrence of important hybridization effects between ripplons and rotons.Comment: 23 pages, REVTEX 3.0, 11 figures upon request, UTF-326/9
    corecore