35 research outputs found

    Regulation of Kir4.1 expression in astrocytes and astrocytic tumors: a role for interleukin-1 beta

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>Decreased expression of inwardly rectifying potassium (Kir) channels in astrocytes and glioma cells may contribute to impaired K<sup>+</sup> buffering and increased propensity for seizures. Here, we evaluated the potential effect of inflammatory molecules, such as interleukin-1β (IL-1β) on Kir4.1 mRNA and protein expression.</p> <p>Methods</p> <p>We investigated Kir4.1 (Kcnj10) and IL-1β mRNA expression in the temporal cortex in a rat model of temporal lobe epilepsy 24 h and 1 week after induction of status epilepticus (SE), using real-time PCR and western blot analysis. The U373 glioblastoma cell line and human fetal astrocytes were used to study the regulation of Kir4.1 expression in response to pro-inflammatory cytokines. Expression of Kir4.1 protein was also evaluated by means of immunohistochemistry in surgical specimens of patients with astrocytic tumors (<it>n</it> = 64), comparing the expression in tumor patients with (<it>n</it> = 38) and without epilepsy (<it>n</it> = 26).</p> <p>Results</p> <p>Twenty-four hours after onset of SE, Kir4.1 mRNA and protein were significantly down-regulated in temporal cortex of epileptic rats. This decrease in expression was followed by a return to control level at 1 week after SE. The transient downregulation of Kir4.1 corresponded to the time of prominent upregulation of IL-1β mRNA. Expression of Kir4.1 mRNA and protein in glial cells in culture was downregulated after exposure to IL-1β. Evaluation of Kir4.1 in tumor specimens showed a significantly lower Kir4.1 expression in the specimens of patients with epilepsy compared to patients without epilepsy. This paralleled the increased presence of activated microglial cells, as well as the increased expression of IL-1β and the cytoplasmic translocation of high mobility group box 1 (HMGB1).</p> <p>Conclusions</p> <p>Taken together, these findings indicate that alterations in expression of Kir4.1 occurring in epilepsy-associated lesions are possibly influenced by the local inflammatory environment and in particular by the inflammatory cytokine IL-1β.</p

    Developmental regulation of CB1-mediated spike-time dependent depression at immature mossy fiber-CA3 synapses

    Get PDF
    Early in postnatal life, mossy fibres (MF), the axons of granule cells in the dentate gyrus, release GABA which is depolarizing and excitatory. Synaptic currents undergo spike-time dependent long-term depression (STD-LTD) regardless of the temporal order of stimulation (pre versus post and viceversa). Here we show that at P3 but not at P21, STD-LTD, induced by negative pairing, is mediated by endocannabinoids mobilized from the postsynaptic cell during spiking-induced membrane depolarization. By diffusing backward, endocannabinoids activate cannabinoid type-1 (CB1) receptors probably expressed on MF. Thus, STD-LTD was prevented by CB1 receptor antagonists and was absent in CB1-KO mice. Consistent with these data, in situ hybridization experiments revealed detectable level of CB1 mRNA in the granule cell layer at P3 but not at P21. These results indicate that CB1 receptors are transiently expressed on immature MF terminals where they counteract the enhanced neuronal excitability induced by the excitatory action of GABA

    Inflammation and epilepsy: the contribution of astrocytes

    Get PDF
    De activatie van inflammatoire signaleringsroutes en de daaruit volgende afgifte van ontstekingsmoleculen door astrocyten, kan de epileptische activiteit beïnvloeden. Specifieke eiwitsignaleringsroutes in astrocyten, betrokken bij ontsteking, leveren een bijdrage aan epileptische activiteit. Epilepsie is één van de meest voorkomende neurologische aandoeningen (het treft ongeveer één procent van de wereldbevolking). Circa dertig procent van alle epilepsiepatiënten reageert niet op de beschikbare medicijnen. Emanuele Zurolo onderzocht de bijdrage van astrocyten (cellen in het zenuwstelsel) aan epilepsie om meer begrip te krijgen van de verschillende eiwitsignaleringsroutes betrokken bij het ontstaan van deze ziekte

    Ontogenetic modifications of neuronal excitability during brain maturation: developmental changes of neurotransmitter receptors

    No full text
    The development of the human brain depends on a precisely orchestrated cascade of events, including proliferation, migration and maturation of neural progenitor cells. Different mechanisms coordinate these stages to reach a normal structural organization, producing appropriate excitatory and inhibitory networks. Here, we will briefly review the developmental changes of glutamate (Glu) and γ-aminobutyric acid (GABA) receptors, with particular attention to the development of the human brain. We will also briefly discuss recent evidence on the involvement of the endocannabinoid signaling in the regulation of neuronal excitability during early brain development.

    The inflammatory molecules IL-1β and HMGB1 can rapidly enhance focal seizure generation in a brain slice model of temporal lobe epilepsy

    Get PDF
    Epilepsy is a neurological disorder characterized by a hyperexcitable brain tissue and unpredictable seizures, i.e., aberrant firing discharges in large neuronal populations. It is well established that proinflammatory cytokines, in addition to their canonical involvement in the immune response, have a crucial role in the mechanism of seizure generation. The purpose of the present study was to investigate the role of interleukin-1β (IL-1β) and high mobility group B1 (HMGB1) in the generation of seizure-like discharges using two models of focal epilepsy in a rat entorhinal cortex slice preparation. Seizure like-discharges were evoked by either slice perfusion with low Mg(2+) and picrotoxin or with a double NMDA local stimulation in the presence of the proconvulsant 4-amino-pyridine. The effects of IL-1β or HMGB1 were evaluated by monitoring seizure discharge generation through laser scanning microscope imaging of Ca(2+) signals from neurons and astrocytes. In the picrotoxin model, we revealed that both cytokines increased the mean frequency of spontaneous ictal-like discharges, whereas only IL-1β reduced the latency and prolonged the duration of the first ictal-like event. In the second model, a single NMDA pulse, per se ineffective, became successful when it was performed after IL-β or HMGB1 local applications. These findings demonstrate that both IL-1β and HMGB1 can rapidly lower focal ictal event threshold and strengthen the possibility that targeting these inflammatory pathways may represent an effective therapeutic strategy to prevent seizures

    CB1 and CB2 cannabinoid receptor expression during development and in epileptogenic developmental pathologies

    No full text
    Recent data support the involvement of the endocannabinoid signaling in early brain development, as well as a key role of cannabinoid receptors (CBR) in pathological conditions associated with unbalanced neuronal excitability and inflammation. Using immunocytochemistry, we explored the expression and cellular pattern of CBR1 and 2 (CB1 and CB2) during prenatal human cortical development, as well as in focal malformations of cortical development associated with intractable epilepsy (focal cortical dysplasia; cortical tubers in patients with the tuberous sclerosis complex and glioneuronal tumors). Strong CB1 immunoreactivity was detected in the cortical plate in developing human brain from the earliest stages tested (gestational week 9) and it persisted throughout prenatal development. Both cannabinoid receptors were not detected in neural progenitor cells located in the ventricular zone. Only CB1 was expressed in the subventricular zone and in Cajal-Retzius cells in the molecular zone of the developing neocortex. CB2 was detected in cells of the microglia/macrophage lineage during development. In malformations of cortical development, prominent CB1 expression was demonstrated in dysplastic neurons. Both CBR were detected in balloon/giant cells, but CB2 appeared to be more frequently expressed than CBI in these cell types. Reactive astrocytes were mainly stained with CB1, whereas cells of the microglia/macrophage lineage were stained with CB2. These findings confirm the early expression pattern of cannabinoid receptors in the developing human brain, suggesting a function for CB1 in the early stages of corticogenesis. The expression patterns in malformations of cortical development highlight the role of cannabinoid receptors as mediators of the endocannabinoid signaling and as potential pharmacological targets to modulate neuronal and glial cell function in epileptogenic developmental pathologies. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserve
    corecore