127 research outputs found

    Perceptions of trekking tourism and social and environmental change in Nepal's Himalayas

    Get PDF
    The Himalayas are among the world’s youngest mountain ranges. In addition to the geologic processes of mountain building and erosion, they are also highly vulnerable to human influenced change, occurring at local, national, regional, and international scales. A photo-elicitation methodology is employed to show how residents perceive those changes from historical perspectives, as well as their current conditions and impacts on their daily lives. Nepal’s Khumbu region has undergone major social and environmental transformations since the 1960s when international trekking first began to influence the area's economy. The current perceptions of Khumbu residents of these changes is assessed through photo-elicitation interviews. Their responses are placed in the historical context of: (i) institutional and political changes, much of which have been driven by national government policies; (ii) social and economic changes, for which the tourism economy has been central; and (iii) environmental changes, reflecting the impacts of resource management and climate change. The mostly positive perceptions of Khumbu residents toward how their region has changed reflects general improvements in the physical and cultural landscapes of the Khumbu over time, as well as its continuing geographic isolation, which has helped to slow the rate of globalization, while also keeping the region a dynamic and popular tourist destination

    Hunting down the chimera of multiple disciplinarity in conservation science

    Get PDF
    The consensus is that both ecological and social factors are essential dimensions of conservation research and practice. However, much of the literature on multiple disciplinary collaboration focuses on the difficulties of undertaking it. This review of the challenges of conducting multiple disciplinary collaboration offers a framework for thinking about the diversity and complexity of this endeavor. We focused on conceptual challenges, of which 5 main categories emerged: methodological challenges, value judgments, theories of knowledge, disciplinary prejudices, and interdisciplinary communication. The major problems identified in these areas have proved remarkably persistent in the literature surveyed (c.1960–2012). Reasons for these failures to learn from past experience include the pressure to produce positive outcomes and gloss over disagreements, the ephemeral nature of many such projects and resulting lack of institutional memory, and the apparent complexity and incoherence of the endeavor. We suggest that multiple disciplinary collaboration requires conceptual integration among carefully selected multiple disciplinary team members united in investigating a shared problem or question. We outline a 9‐point sequence of steps for setting up a successful multiple disciplinary project. This encompasses points on recruitment, involving stakeholders, developing research questions, negotiating power dynamics and hidden values and conceptual differences, explaining and choosing appropriate methods, developing a shared language, facilitating on‐going communications, and discussing data integration and project outcomes. Although numerous solutions to the challenges of multiple disciplinary research have been proposed, lessons learned are often lost when projects end or experienced individuals move on. We urge multiple disciplinary teams to capture the challenges recognized, and solutions proposed, by their researchers while projects are in process. A database of well‐documented case studies would showcase theories and methods from a variety of disciplines and their interactions, enable better comparative study and evaluation, and provide a useful resource for developing future projects and training multiple disciplinary researchers

    Friends and Foes from an Ant Brain's Point of View – Neuronal Correlates of Colony Odors in a Social Insect

    Get PDF
    Background: Successful cooperation depends on reliable identification of friends and foes. Social insects discriminate colony members (nestmates/friends) from foreign workers (non-nestmates/foes) by colony-specific, multi-component colony odors. Traditionally, complex processing in the brain has been regarded as crucial for colony recognition. Odor information is represented as spatial patterns of activity and processed in the primary olfactory neuropile, the antennal lobe (AL) of insects, which is analogous to the vertebrate olfactory bulb. Correlative evidence indicates that the spatial activity patterns reflect odor-quality, i.e., how an odor is perceived. For colony odors, alternatively, a sensory filter in the peripheral nervous system was suggested, causing specific anosmia to nestmate colony odors. Here, we investigate neuronal correlates of colony odors in the brain of a social insect to directly test whether they are anosmic to nestmate colony odors and whether spatial activity patterns in the AL can predict how odor qualities like ‘‘friend’’ and ‘‘foe’’ are attributed to colony odors. Methodology/Principal Findings: Using ant dummies that mimic natural conditions, we presented colony odors and investigated their neuronal representation in the ant Camponotus floridanus. Nestmate and non-nestmate colony odors elicited neuronal activity: In the periphery, we recorded sensory responses of olfactory receptor neurons (electroantennography), and in the brain, we measured colony odor specific spatial activity patterns in the AL (calcium imaging). Surprisingly, upon repeated stimulation with the same colony odor, spatial activity patterns were variable, and as variable as activity patterns elicited by different colony odors. Conclusions: Ants are not anosmic to nestmate colony odors. However, spatial activity patterns in the AL alone do not provide sufficient information for colony odor discrimination and this finding challenges the current notion of how odor quality is coded. Our result illustrates the enormous challenge for the nervous system to classify multi-component odors and indicates that other neuronal parameters, e.g., precise timing of neuronal activity, are likely necessary for attribution of odor quality to multi-component odors

    Measurement, Collaborative Learning and Research for Sustainable Use of Ecosystem Services: Landscape Concepts and Europe as Laboratory

    Get PDF

    Perceptual landscape simulations history and prospect

    No full text
    Contributed by Susan Pietsch ([email protected]

    Perceptual Landscape Simulations: History and Prospect

    No full text
    • 

    corecore