80 research outputs found

    Glycine N-methyltransferases: A comparison of the crystal structures and kinetic properties of recombinant human, mouse and rat enzymes

    Get PDF
    Glycine N-methyltransferases (GNMTs) from three mammalian sources were compared with respect to their crystal structures and kinetic parameters. The crystal structure for the rat enzyme was published previously. Human and mouse GNMT were expressed in Escherichia coli in order to determine their crystal structures. Mouse GNMT was crystallized in two crystal forms, a monoclinic form and a tetragonal form. Comparison of the three structures reveals subtle differences, which may relate to the different kinetic properties of the enzymes. The flexible character of several loops surrounding the active site, along with an analysis of the active site boundaries, indicates that the observed conformations of human and mouse GNMTs are more open than that of the rat enzyme. There is an increase in kcat when going from rat to mouse to human, suggesting a correlation with the increased flexibility of some structural elements of the respective enzymes. © 2004 Wiley-Liss, Inc

    Differences in folate-protein interactions result in differing inhibition of native rat liver and recombinant glycine N-methyltransferase by 5-methyltetrahydrofolate

    Get PDF
    Glycine N-methyltransferase (GNMT) is a key regulatory enzyme in methyl group metabolism. In mammalian liver it reduces S-adenosylmethionine levels by using it to methylate glycine, producing N-methylglycine (sarcosine) and S-adenosylhomocysteine. GNMT is inhibited by binding two molecules of 5-methyltetrahydrofolate (mono- or polyglutamate forms) per tetramer of the active enzyme. Inhibition is sensitive to the status of the N-terminal valine of GNMT and to polyglutamation of the folate inhibitor. It is inhibited by pentaglutamate form more efficiently compared to monoglutamate form. The native rat liver GNMT contains an acetylated N-terminal valine and is inhibited much more efficiently compared to the recombinant protein expressed in E. coli where the N-terminus is not acetylated. In this work we used a protein crystallography approach to evaluate the structural basis for these differences. We show that in the folate-GNMT complexes with the native enzyme, two folate molecules establish three and four hydrogen bonds with the protein. In the folate-recombinant GNMT complex only one hydrogen bond is established. This difference results in more effective inhibition by folate of the native liver GNMT activity compared to the recombinant enzyme. © 2011 Elsevier B.V. All rights reserved

    Folate in demethylation: The crystal structure of the rat dimethylglycine dehydrogenase complexed with tetrahydrofolate

    Get PDF
    Dimethylglycine dehydrogenase (DMGDH) is a mammalian mitochondrial enzyme which plays an important role in the utilization of methyl groups derived from choline. DMGDH is a flavin containing enzyme which catalyzes the oxidative demethylation of dimethylglycine in vitro with the formation of sarcosine (N-methylglycine), hydrogen peroxide and formaldehyde. DMGDH binds tetrahydrofolate (THF) in vivo, which serves as an acceptor of formaldehyde and in the cell the product of the reaction is 5,10-methylenetetrahydrofolate instead of formaldehyde. To gain insight into the mechanism of the reaction we solved the crystal structures of the recombinant mature and precursor forms of rat DMGDH and DMGDH-THF complexes. Both forms of DMGDH reveal similar kinetic parameters and have the same tertiary structure fold with two domains formed by N- and C-terminal halves of the protein. The active center is located in the N-terminal domain while the THF binding site is located in the C-terminal domain about 40 Å from the isoalloxazine ring of FAD. The folate binding site is connected with the enzyme active center via an intramolecular channel. This suggests the possible transfer of the intermediate imine of dimethylglycine from the active center to the bound THF where they could react producing a 5,10- methylenetetrahydrofolate. Based on the homology of the rat and human DMGDH the structural basis for the mechanism of inactivation of the human DMGDH by naturally occurring His109Arg mutation is proposed. ©2014 Elsevier Inc. All rights reserved

    5-Methyltetrahydrofolate is bound in intersubunit areas of rat liver folate-binding protein glycine N-methyltransferase

    Get PDF
    Glycine N-methyltransferase (GNMT) is a key regulatory enzyme in methyl group metabolism. It is abundant in the liver, where it uses excess S-adenosylmethionine (AdoMet) to methylate glycine to N-methylglycine (sarcosine) and produces S-adenosylhomocysteine (AdoHcy), thereby controlling the methylating potential of the cell. GNMT also links utilization of preformed methyl groups, in the form of methionine, to their de novo synthesis, because it is inhibited by a specific form of folate, 5-methyltetrahydrofolate. Although the structure of the enzyme has been elucidated by x-ray crystallography of the apoenzyme and in the presence of the substrate, the location of the folate inhibitor in the tetrameric structure has not been identified. We report here for the first time the crystal structure of rat GNMT complexed with 5-methyltetrahydrofolate. In the GNMT-folate complex, two folate binding sites were located in the intersubunit areas of the tetramer. Each folate binding site is formed primarily by two 1-7 N-terminal regions of one pair of subunits and two 205-218 regions of the other pair of subunits. Both the pteridine and p-aminobenzoyl rings are located in the hydrophobic cavities formed by Tyr 5, Leu207, and Met215 residues of all subunits. Binding experiments in solution also confirm that one GNMT tetramer binds two folate molecules. For the enzymatic reaction to take place, the N-terminal fragments of GNMTmust have a significant degree of conformational freedom to provide access to the active sites. The presence of the folate in this position provides a mechanism for its inhibition

    Pointing control for the SPIDER balloon-borne telescope

    Full text link
    We present the technology and control methods developed for the pointing system of the SPIDER experiment. SPIDER is a balloon-borne polarimeter designed to detect the imprint of primordial gravitational waves in the polarization of the Cosmic Microwave Background radiation. We describe the two main components of the telescope's azimuth drive: the reaction wheel and the motorized pivot. A 13 kHz PI control loop runs on a digital signal processor, with feedback from fibre optic rate gyroscopes. This system can control azimuthal speed with < 0.02 deg/s RMS error. To control elevation, SPIDER uses stepper-motor-driven linear actuators to rotate the cryostat, which houses the optical instruments, relative to the outer frame. With the velocity in each axis controlled in this way, higher-level control loops on the onboard flight computers can implement the pointing and scanning observation modes required for the experiment. We have accomplished the non-trivial task of scanning a 5000 lb payload sinusoidally in azimuth at a peak acceleration of 0.8 deg/s2^2, and a peak speed of 6 deg/s. We can do so while reliably achieving sub-arcminute pointing control accuracy.Comment: 20 pages, 12 figures, Presented at SPIE Ground-based and Airborne Telescopes V, June 23, 2014. To be published in Proceedings of SPIE Volume 914

    Feasibility of trial procedures for a randomised controlled trial of a community based group exercise intervention for falls prevention for visually impaired older people: the VIOLET study

    Get PDF
    Background Visually impaired older people (VIOP) have a higher risk of falling than their sighted peers, and are likely to avoid physical activity. The aim was to adapt the existing Falls Management Exercise (FaME) programme for VIOP, delivered in the community, and to investigate the feasibility of conducting a definitive randomised controlled trial (RCT) of this adapted intervention. Methods Two-centre randomised mixed methods pilot trial and economic evaluation of the adapted group-based FaME programme for VIOP versus usual care. A one hour exercise programme ran weekly over 12 weeks at the study sites (Newcastle and Glasgow), delivered by third sector (voluntary and community) organisations. Participants were advised to exercise at home for an additional two hours over the week. Those randomised to the usual activities group received no intervention. Outcome measures were completed at baseline, 12 and 24 weeks. The potential primary outcome was the Short Form Falls Efficacy Scale – International (SFES-I). Participants’ adherence was assessed by reviewing attendance records and self-reported compliance to the home exercises. Adherence with the course content (fidelity) by instructors was assessed by a researcher. Adverse events were collected in a weekly phone call. Results Eighteen participants, drawn from community-living VIOP were screened; 68 met the inclusion criteria; 64 participants were randomised with 33 allocated to the intervention and 31 to the usual activities arm. 94% of participants provided data at the 12 week visit and 92% at 24 weeks. Adherence was high. The intervention was found to be safe with 76% attending nine or more classes. Median time for home exercise was 50 min per week. There was little or no evidence that fear of falling, balance and falls risk, physical activity, emotional, attitudinal or quality of life outcomes differed between trial arms at follow-up. Conclusions The intervention, FaME, was implemented successfully for VIOP and all progression criteria for a main trial were met. The lack of difference between groups on fear of falling was unsurprising given it was a pilot study but there may have been other contributory factors including suboptimal exercise dose and apparent low risk of falls in participants. These issues need addressing for a future trial

    Reliability and Validity of the Ethiopian Version of the Hospital Anxiety and Depression Scale (HADS) in HIV Infected Patients

    Get PDF
    The hospital anxiety and depression scale (HADS) is a widely used instrument for evaluating psychological distress from anxiety and depression. HADS has not yet been validated in Ethiopia. The aim of this study was to evaluate the reliability and validity of the Amharic (Ethiopian language) version of HADs among HIV infected patients.The translated scale was administered to 302 HIV/AIDS patients on follow up for and taking anti-retroviral treatment. Consistency assessment was conducted using Cronbach's alpha, test-retest reliability using intra-class correlation coefficients (ICC). Construct validity was examined using principal components analysis (PCA). Parallel analysis, Kaiser's criterion and the scree test were used for factor extraction.The internal consistency was 0.78 for the anxiety, 0.76 for depression subscales and 0.87 for the full scale of HADS. The intra-class correlation coefficient (ICC) was 80%, 86%, and 84% for the anxiety and depression subscales, and total score respectively. PCA revealed a one dimensional scale.This preliminary validation study of the Ethiopian version of the HADs indicates that it has promising acceptability, reliability and validity. The adopted scale has a single underlying dimension as indicated by Razavi's model. The HADS can be used to examine psychological distress in HIV infected patients. Findings are discussed and recommendations made

    Relating therapy for voices (the R2V study): study protocol for a pilot randomized controlled trial

    Get PDF
    Background Evidence exists for the effectiveness of cognitive behaviour therapy for psychosis with moderate effect sizes, but the evidence for cognitive behaviour therapy specifically for distressing voices is less convincing. An alternative symptom-based approach may be warranted and a body of literature has explored distressing voices from an interpersonal perspective. This literature has informed the development of relating therapy and findings from a case series suggested that this intervention was acceptable to hearers and therapists. Methods/Design An external pilot randomized controlled trial (RCT) comparing outcomes for 15 patients receiving 16 hours (weekly sessions of one hour) of relating therapy and their usual treatment with 15 patients receiving only their usual treatment. Participants will be assessed using questionnaires at baseline, 16 weeks (post-intervention), and 36 weeks (follow-up). Discussion Expected outcomes will include a refined study protocol and an estimate of the effect size to inform the sample size of a definitive RCT. If evidence from a fully powered RCT suggests that relating therapy is effective, the therapy will extend the range of evidence-based psychological therapies available to people who hear distressing voices
    • …
    corecore