570 research outputs found

    Rumination syndrome: Assessment of vagal tone during and after meals and during diaphragmatic breathing

    Get PDF
    Background: Pathophysiology of rumination syndrome (RS) is not well understood. Treatment with diaphragmatic breathing improves rumination syndrome. The aim of the study was to characterize vagal tone in patients with rumination syndrome during and after meals and during diaphragmatic breathing. Methods: We prospectively recruited 10 healthy volunteers (HV) and 10 patients with RS. Subjects underwent measurement of vagal tone using heart rate variability. Vagal tone was measured during baseline, test meal and intervention (diaphragmatic (DiaB), slow deep (SlowDB), and normal breathing). Vagal tone was assessed using mean values of root mean square of successive differences (RMSSD), and area under curves (AUC) were calculated for each period. We compared baseline RMSSD, the AUC and meal‐induced discomfort scores between HV and RS. Furthermore, we assessed the effect of respiratory exercises on symptom scores, and number of rumination episodes. Key Results: There was no significant difference in baseline vagal tone between HV and RS. During the postprandial period, there was a trend to higher vagal tone in RS, but not significantly (P > .2 for all). RS had the higher total symptom scores than HV (P < .011). In RS, only DiaB decreased the number of rumination episodes during the intervention period (P = .028), while both DiaB and SlowDB increased vagal tone (P < .05 for both). The symptom scores with the 3 breathing exercises showed very similar trends. Conclusions and inferences: Patients with RS do not have decreased vagal tone related to meals. DiaB reduced number of rumination events by a mechanism not related to changes in vagal tone

    Genome-wide High-Resolution Mapping and Functional Analysis of DNA Methylation in Arabidopsis

    Get PDF
    SummaryCytosine methylation is important for transposon silencing and epigenetic regulation of endogenous genes, although the extent to which this DNA modification functions to regulate the genome is still unknown. Here we report the first comprehensive DNA methylation map of an entire genome, at 35 base pair resolution, using the flowering plant Arabidopsis thaliana as a model. We find that pericentromeric heterochromatin, repetitive sequences, and regions producing small interfering RNAs are heavily methylated. Unexpectedly, over one-third of expressed genes contain methylation within transcribed regions, whereas only ∌5% of genes show methylation within promoter regions. Interestingly, genes methylated in transcribed regions are highly expressed and constitutively active, whereas promoter-methylated genes show a greater degree of tissue-specific expression. Whole-genome tiling-array transcriptional profiling of DNA methyltransferase null mutants identified hundreds of genes and intergenic noncoding RNAs with altered expression levels, many of which may be epigenetically controlled by DNA methylation

    Extensive molecular tinkering in the evolution of the membrane attachment mode of the Rheb GTPase

    Get PDF
    Rheb is a conserved and widespread Ras-like GTPase involved in cell growth regulation mediated by the (m)TORC1 kinase complex and implicated in tumourigenesis in humans. Rheb function depends on its association with membranes via prenylated C-terminus, a mechanism shared with many other eukaryotic GTPases. Strikingly, our analysis of a phylogenetically rich sample of Rheb sequences revealed that in multiple lineages this canonical and ancestral membrane attachment mode has been variously altered. The modifications include: (1) accretion to the N-terminus of two different phosphatidylinositol 3-phosphate-binding domains, PX in Cryptista (the fusion being the first proposed synapomorphy of this clade), and FYVE in Euglenozoa and the related undescribed flagellate SRT308; (2) acquisition of lipidic modifications of the N-terminal region, namely myristoylation and/or S-palmitoylation in seven different protist lineages; (3) acquisition of S-palmitoylation in the hypervariable C-terminal region of Rheb in apusomonads, convergently to some other Ras family proteins; (4) replacement of the C-terminal prenylation motif with four transmembrane segments in a novel Rheb paralog in the SAR clade; (5) loss of an evident C-terminal membrane attachment mechanism in Tremellomycetes and some Rheb paralogs of Euglenozoa. Rheb evolution is thus surprisingly dynamic and presents a spectacular example of molecular tinkering

    Tiling array data analysis: a multiscale approach using wavelets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tiling array data is hard to interpret due to noise. The wavelet transformation is a widely used technique in signal processing for elucidating the true signal from noisy data. Consequently, we attempted to denoise representative tiling array datasets for ChIP-chip experiments using wavelets. In doing this, we used specific wavelet basis functions, <it>Coiflets</it>, since their triangular shape closely resembles the expected profiles of true ChIP-chip peaks.</p> <p>Results</p> <p>In our wavelet-transformed data, we observed that noise tends to be confined to small scales while the useful signal-of-interest spans multiple large scales. We were also able to show that wavelet coefficients due to non-specific cross-hybridization follow a log-normal distribution, and we used this fact in developing a thresholding procedure. In particular, wavelets allow one to set an unambiguous, absolute threshold, which has been hard to define in ChIP-chip experiments. One can set this threshold by requiring a similar confidence level at different length-scales of the transformed signal. We applied our algorithm to a number of representative ChIP-chip data sets, including those of Pol II and histone modifications, which have a diverse distribution of length-scales of biochemical activity, including some broad peaks.</p> <p>Conclusions</p> <p>Finally, we benchmarked our method in comparison to other approaches for scoring ChIP-chip data using spike-ins on the ENCODE Nimblegen tiling array. This comparison demonstrated excellent performance, with wavelets getting the best overall score.</p

    The Two-Nucleon Potential from Chiral Lagrangians

    Get PDF
    Chiral symmetry is consistently implemented in the two-nucleon problem at low-energy through the general effective chiral lagrangian. The potential is obtained up to a certain order in chiral perturbation theory both in momentum and coordinate space. Results of a fit to scattering phase shifts and bound state data are presented, where satisfactory agreement is found for laboratory energies up to about 100 Mev.Comment: Postscript file; figures available by reques

    Variation in amount of wild-type transthyretin in different fibril and tissue types in ATTR amyloidosis

    Get PDF
    Familial transthyretin (TTR) amyloidosis is caused by a mutation in the TTR gene, although wild-type (wt) TTR is also incorporated into the amyloid fibrils. Liver transplantation (LT) is the prevailing treatment of the disease and is performed in order to eliminate the mutant TTR from plasma. The outcome of the procedure is varied; especially problematic is a progressive cardiomyopathy seen in some patients, presumably caused by continued incorporation of wtTTR. What determines the discrepancy in outcome is not clear. We have previously shown that two structurally distinct amyloid fibrils (with or without fragmented ATTR) are found among ATTRV30M patients. In this study, we investigated the proportion of wtATTR in cardiac and adipose amyloid from patients having either fibril type. It was found that cardiac amyloid more easily incorporates wtTTR than adipose amyloid, offering a potential explanation for the vulnerability of cardiac tissue for continued amyloidosis after LT. In cardiac tissue, fibrils with fragmented ATTR contained a higher wt proportion than fibrils without, suggesting that continued incorporation of wtTTR after LT, perhaps, can take place more easily in these patients. In adipose tissue, a rapid increase in wt proportion after LT indicates that a rather fast turnover of the deposits must occur. A difference in wt proportion between the fibril types was seen post-LT but not pre-LT, possibly caused by differences in turnover rate. Conclusively, this study further establishes the basic dissimilarities between the two fibril types and demonstrates that their role in LT outcome needs to be further investigated

    Neural Stem Cells as a Novel Platform for Tumor-Specific Delivery of Therapeutic Antibodies

    Get PDF
    Recombinant monoclonal antibodies have emerged as important tools for cancer therapy. Despite the promise shown by antibody-based therapies, the large molecular size of antibodies limits their ability to efficiently penetrate solid tumors and precludes efficient crossing of the blood-brain-barrier into the central nervous system (CNS). Consequently, poorly vascularized solid tumors and CNS metastases cannot be effectively treated by intravenously-injected antibodies. The inherent tumor-tropic properties of human neural stem cells (NSCs) can potentially be harnessed to overcome these obstacles and significantly improve cancer immunotherapy. Intravenously-delivered NSCs preferentially migrate to primary and metastatic tumor sites within and outside the CNS. Therefore, we hypothesized that NSCs could serve as an ideal cellular delivery platform for targeting antibodies to malignant tumors., and can deliver antibodies to human breast cancer xenografts in mice.Taken together, these results suggest that NSCs modified to secrete HER2-targeting antibodies constitute a promising novel platform for targeted cancer immunotherapy. Specifically, this NSC-mediated antibody delivery system has the potential to significantly improve clinical outcome for patients with HER2-overexpressing breast cancer

    NN Core Interactions and Differential Cross Sections from One Gluon Exchange

    Full text link
    We derive nonstrange baryon-baryon scattering amplitudes in the nonrelativistic quark model using the ``quark Born diagram" formalism. This approach describes the scattering as a single interaction, here the one-gluon-exchange (OGE) spin-spin term followed by constituent interchange, with external nonrelativistic baryon wavefunctions attached to the scattering diagrams to incorporate higher-twist wavefunction effects. The short-range repulsive core in the NN interaction has previously been attributed to this spin-spin interaction in the literature; we find that these perturbative constituent-interchange diagrams do indeed predict repulsive interactions in all I,S channels of the nucleon-nucleon system, and we compare our results for the equivalent short-range potentials to the core potentials found by other authors using nonperturbative methods. We also apply our perturbative techniques to the NΔ\Delta and ΔΔ\Delta\Delta systems: Some ΔΔ\Delta\Delta channels are found to have attractive core potentials and may accommodate ``molecular" bound states near threshold. Finally we use our Born formalism to calculate the NN differential cross section, which we compare with experimental results for unpolarised proton-proton elastic scattering. We find that several familiar features of the experimental differential cross section are reproduced by our Born-order result.Comment: 27 pages, figures available from the authors, revtex, CEBAF-TH-93-04, MIT-CTP-2187, ORNL-CCIP-93-0
    • 

    corecore