807 research outputs found
Observation and interpretation of motional sideband asymmetry in a quantum electro-mechanical device
Quantum electro-mechanical systems offer a unique opportunity to probe
quantum noise properties in macroscopic devices, properties which ultimately
stem from the Heisenberg Uncertainty Principle. A simple example of this is
expected to occur in a microwave parametric transducer, where mechanical motion
generates motional sidebands corresponding to the up and down
frequency-conversion of microwave photons. Due to quantum vacuum noise, the
rates of these processes are expected to be unequal. We measure this
fundamental imbalance in a microwave transducer coupled to a radio-frequency
mechanical mode, cooled near the ground state of motion. We also discuss the
subtle origin of this imbalance: depending on the measurement scheme, the
imbalance is most naturally attributed to the quantum fluctuations of either
the mechanical mode or of the electromagnetic field
X-ray spectral diagnostics of activity in massive stars
X-rays give direct evidence of instabilities, time-variable structure, and
shock heating in the winds of O stars. The observed broad X-ray emission lines
provide information about the kinematics of shock-heated wind plasma, enabling
us to test wind-shock models. And their shapes provide information about wind
absorption, and thus about the wind mass-loss rates. Mass-loss rates determined
from X-ray line profiles are not sensitive to density-squared clumping effects,
and indicate mass-loss rate reductions of factors of 3 to 6 over traditional
diagnostics that suffer from density-squared effects. Broad-band X-ray spectral
energy distributions also provide mass-loss rate information via soft X-ray
absorption signatures. In some cases, the degree of wind absorption is so high
that the hardening of the X-ray SED can be quite significant. We discuss these
results as applied to the early O stars zeta Pup (O4 If), 9 Sgr (O4 V((f))),
and HD 93129A (O2 If*).Comment: To appear in the proceedings of IAU 272: Active OB Star
Quantum squeezing of motion in a mechanical resonator
As a result of the quantum, wave-like nature of the physical world, a
harmonic oscillator can never be completely at rest. Even in the quantum ground
state, its position will always have fluctuations, called the zero-point
motion. Although the zero-point fluctuations are unavoidable, they can be
manipulated. In this work, using microwave frequency radiation pressure, we
both prepare a micron-scale mechanical system in a state near the quantum
ground state and then manipulate its thermal fluctuations to produce a
stationary, quadrature-squeezed state. We deduce that the variance of one
motional quadrature is 0.80 times the zero-point level, or 1 dB of
sub-zero-point squeezing. This work is relevant to the quantum engineering of
states of matter at large length scales, the study of decoherence of large
quantum systems, and for the realization of ultra-sensitive sensing of force
and motion
Mechanically Detecting and Avoiding the Quantum Fluctuations of a Microwave Field
During the theoretical investigation of the ultimate sensitivity of
gravitational wave detectors through the 1970's and '80's, it was debated
whether quantum fluctuations of the light field used for detection, also known
as photon shot noise, would ultimately produce a force noise which would
disturb the detector and limit the sensitivity. Carlton Caves famously answered
this question with "They do." With this understanding came ideas how to avoid
this limitation by giving up complete knowledge of the detector's motion. In
these back-action evading (BAE) or quantum non-demolition (QND) schemes, one
manipulates the required quantum measurement back-action by placing it into a
component of the motion which is unobserved and dynamically isolated. Using a
superconducting, electro-mechanical device, we realize a sensitive measurement
of a single motional quadrature with imprecision below the zero-point
fluctuations of motion, detect both the classical and quantum measurement
back-action, and demonstrate BAE avoiding the quantum back-action from the
microwave photons by 9 dB. Further improvements of these techniques are
expected to provide a practical route to manipulate and prepare a squeezed
state of motion with mechanical fluctuations below the quantum zero-point
level, which is of interest both fundamentally and for the detection of very
weak forces
Demonstration of a Thermally Coupled Row-Column SNSPD Imaging Array
While single-pixel superconducting nanowire single photon detectors (SNSPDs) have demonstrated remarkable efficiency and timing performance from the UV to near-IR, scaling these devices to large imaging arrays remains challenging. Here, we propose a new SNSPD multiplexing system using thermal coupling and detection correlations between two photosensitive layers of an array. Using this architecture with the channels of one layer oriented in rows and the second layer in columns, we demonstrate imaging capability in 16-pixel arrays with accurate spot tracking at the few-photon level. We also explore the performance trade-offs of orienting the top layer nanowires parallel and perpendicular to the bottom layer. The thermally coupled row-column scheme is readily able to scale to the kilopixel size with existing readout systems and, when combined with other multiplexing architectures, has the potential to enable megapixel scale SNSPD imaging arrays
Measuring the Relative Phase of the Energy Gap in a High-Temperature Superconductor with EELS
A method of measuring the relative phase of the energy gap in a
high-temperature superconductor is suggested for electron energy loss
spectroscopy. Energy-resolved measurements of off-specular scattering should
show a feature similar to the specular feature associated with the gap. Unlike
the specular feature, which reflects an average of the gap over the (normal)
Fermi surface, the energy loss of the off-specular feature depends on the
superconducting energy gap at only two locations on the Fermi surface. The
onset of the feature reflects the relative phase between these two points. This
result is independent of surface characteristics. Such characteristics affect
the {\it magnitude} of the off-specular feature, not its location or onset. The
size of the feature is estimated for a simple surface model. Implications of
specific measurements on are discussed
The Cauchy problem for the 3-D Vlasov-Poisson system with point charges
In this paper we establish global existence and uniqueness of the solution to
the three-dimensional Vlasov-Poisson system in presence of point charges in
case of repulsive interaction. The present analysis extends an analogeous
two-dimensional result by Caprino and Marchioro [On the plasma-charge model, to
appear in Kinetic and Related Models (2010)].Comment: 28 page
- …