287 research outputs found

    A Cu2+ (S = 1/2) Kagom\'e Antiferromagnet: MgxCu4-x(OH)6Cl2

    Full text link
    Spin-frustrated systems are one avenue for inducing macroscopic quantum states in materials. However, experimental realization of this goal has been difficult because of the lack of simple materials and, if available, the separation of the unusual magnetic properties arising from exotic magnetic states from behavior associated with chemical disorder, such as site mixing. Here we report the synthesis and magnetic properties of a new series of magnetically frustrated materials, MgxCu4-x(OH)6Cl2. Because of the substantially different ligand-field chemistry of Mg2+ and Cu2+, site disorder within the kagom\'e layers is minimized, as directly measured by X-ray diffraction. Our results reveal that many of the properties of these materials and related systems are not due to disorder of the magnetic lattice but rather reflect an unusual ground state.Comment: Accepted for publication in J. Am. Chem. Soc

    Ceratoscopelus maderensis : pecular sound-scattering layer identified with this myctophid fish

    Get PDF
    Reprint. Science, vol. 160, no. 3831, 1968, pp. 991-993. Originally issued as Reference No. 68-58, series later renamed WHOI-.A sound- scattering layer, composed of discrete hyperbolic echo-sequences and apparently restricted to the Slope Water region of the western North Atlantic, has been identified from the Deep Submergence Research Vehicle ALVIN with schools of the myctophid fish Ceratoscopelus maderensis. By diving into the layer and using ALVIN's echo-ranging sonar, we approached and visually identified the sound scatterers. The number of echo sequences observed with the surface echo-sounder (1 /23. 76 x 105 cubic meters of water) checked roughly with the number of sonar targets observed from the submarine (1/7. 45 x 105 cubic meters) . The fish schools appeared to be 5 to 10 meters thick, 10 to 100 meters in diameter, and on centers 100 to 200 meters apart. Density within schools was estimated at 10 to 15 fish per cubic meter.Supported in part by contracts Nonr-3484(00) and Nonr-4029(00) and by NSF grant GB-4431

    Toward Perfection: Kapellasite, Cu3Zn(OH)6Cl2, a New Model S = 1/2 Kagome Antiferromagnet

    Full text link
    The search for the resonating valence bond (RVB) state continues to underpin many areas of condensed matter research. The RVB is made from the dimerisation of spins on different sites into fluctuating singlets, and was proposed by Anderson to be the reference state from which the transition to BCS superconductivity occurs. Little is known about the state experimentally, due to the scarcity of model materials. Theoretical work has put forward the S = 1/2 kagome antiferromagnet (KAFM) as a good candidate for the realization of the RVB state. In this paper we introduce a new model system, the S = 1/2 KAFM Kapellasite, Cu3Zn(OH)6Cl2. We show that its crystal structure is a good approximation to a 2-dimensional kagome antiferromagnet and that susceptibility data indicate a collapse of the magnetic moment below T = 25 K that is compatible with the spins condensing into the non-magnetic RVB state.Comment: Communication, 3 pages, 3 figure

    Concomitant Radiotherapy and Chemotherapy for High-Risk Nonmelanoma Skin Carcinomas of the Head and Neck

    Get PDF
    Background. To report on the use and feasibility of a multimodality approach using concomitant radiotherapy and chemotherapy in patients with high-risk nonmelanoma skin carcinoma (NMSC) of the head and neck. Methods. Records of patients with NMSC of the head and neck who received concomitant CRT at the University of North Carolina between 2001 and 2007 were reviewed. Results. Fifteen identified patients had at least one of the following high-risk factors: T4 disease (93%), unresectability (60%), regional nodal involvement (40%), and/or recurrence (47%). Ten patients were treated in the definitive setting and five in the postoperative setting. Platinum based chemotherapy was given in 14 (93%) patients. Ten of fifteen (67%) patients completed all planned chemotherapy treatments, and thirteen patients (87%) completed at least 80% of planned chemotherapy. Mild radiation dermatitis occurred in all patients and reached grade 3 in 13% of patients. No patients experienced grade 4 or 5 toxicity. With a median followup of 31 months in surviving patients, the 2-year actuarial locoregional control and relapse-free survival were 79% and 49%, respectively. Conclusions. Definitive or postoperative chemoradiotherapy for patients with locally advanced or regionally metastasized NMSC of the head and neck appears feasible with acceptable toxicities and favorable locoregional control

    Mutation of the phospholipase C-γ1–binding site of LAT affects both positive and negative thymocyte selection

    Get PDF
    Linker for activation of T cells (LAT) is a scaffolding adaptor protein that is critical for T cell development and function. A mutation of LAT (Y136F) that disrupts phospholipase C-γ1 activation and subsequent calcium influx causes a partial block in T cell development and leads to a severe lymphoproliferative disease in homozygous knock-in mice. One possible contribution to the fatal disease of LAT Y136F knock-in mice could be from autoreactive T cells generated in these mice because of altered thymocyte selection. To examine the impact of the LAT Y136F mutation on thymocyte positive and negative selection, we bred this mutation onto the HY T cell receptor (TCR) transgenic, recombination activating gene-2 knockout background. Female mice with this genotype showed a severe defect in positive selection, whereas male mice exhibited a phenotype resembling positive selection (i.e., development and survival of CD8(hi) HY TCR-specific T cells) instead of negative selection. These results support the hypothesis that in non-TCR transgenic, LAT Y136F knock-in mice, altered thymocyte selection leads to the survival and proliferation of autoreactive T cells that would otherwise be negatively selected in the thymus

    Kondo physics in the algebraic spin liquid

    Full text link
    We study Kondo physics in the algebraic spin liquid, recently proposed to describe ZnCu3(OH)6Cl2ZnCu_{3}(OH)_{6}Cl_{2} [Phys. Rev. Lett. {\bf 98}, 117205 (2007)]. Although spin dynamics of the algebraic spin liquid is described by massless Dirac fermions, this problem differs from the Pseudogap Kondo model, because the bulk physics in the algebraic spin liquid is governed by an interacting fixed point where well-defined quasiparticle excitations are not allowed. Considering an effective bulk model characterized by an anomalous critical exponent, we derive an effective impurity action in the slave-boson context. Performing the large-NσN_{\sigma} analysis with a spin index NσN_{\sigma}, we find an impurity quantum phase transition from a decoupled local-moment state to a Kondo-screened phase. We evaluate the impurity spin susceptibility and specific heat coefficient at zero temperature, and find that such responses follow power-law dependencies due to the anomalous exponent of the algebraic spin liquid. Our main finding is that the Wilson's ratio for the magnetic impurity depends strongly on the critical exponent in the zero temperature limit. We propose that the Wilson's ratio for the magnetic impurity may be one possible probe to reveal criticality of the bulk system
    corecore