13 research outputs found

    Guided assembly of nanoparticles on electrostatically charged nanocrystalline diamond thin films

    Get PDF
    We apply atomic force microscope for local electrostatic charging of oxygen-terminated nanocrystalline diamond (NCD) thin films deposited on silicon, to induce electrostatically driven self-assembly of colloidal alumina nanoparticles into micro-patterns. Considering possible capacitive, sp2 phase and spatial uniformity factors to charging, we employ films with sub-100 nm thickness and about 60% relative sp2 phase content, probe the spatial material uniformity by Raman and electron microscopy, and repeat experiments at various positions. We demonstrate that electrostatic potential contrast on the NCD films varies between 0.1 and 1.2 V and that the contrast of more than ±1 V (as detected by Kelvin force microscopy) is able to induce self-assembly of the nanoparticles via coulombic and polarization forces. This opens prospects for applications of diamond and its unique set of properties in self-assembly of nano-devices and nano-systems

    Impact of AFM-induced nano-pits in a-Si:H films on silicon crystal growth

    Get PDF
    Conductive tips in atomic force microscopy (AFM) can be used to localize field-enhanced metal-induced solid-phase crystallization (FE-MISPC) of amorphous silicon (a-Si:H) at room temperature down to nanoscale dimensions. In this article, the authors show that such local modifications can be used to selectively induce further localized growth of silicon nanocrystals. First, a-Si:H films by plasma-enhanced chemical vapor deposition on nickel/glass substrates are prepared. After the FE-MISPC process, yielding both conductive and non-conductive nano-pits in the films, the second silicon layer at the boundary condition of amorphous and microcrystalline growth is deposited. Comparing AFM morphology and current-sensing AFM data on the first and second layers, it is observed that the second deposition changes the morphology and increases the local conductivity of FE-MISPC-induced pits by up to an order of magnitude irrespective of their prior conductivity. This is attributed to the silicon nanocrystals (<100 nm) that tend to nucleate and grow inside the pits. This is also supported by micro-Raman spectroscopy

    Enhanced Growth and Osteogenic Differentiation of Human Osteoblast-Like Cells on Boron-Doped Nanocrystalline Diamond Thin Films

    Get PDF
    Intrinsic nanocrystalline diamond (NCD) films have been proven to be promising substrates for the adhesion, growth and osteogenic differentiation of bone-derived cells. To understand the role of various degrees of doping (semiconducting to metallic-like), the NCD films were deposited on silicon substrates by a microwave plasma-enhanced CVD process and their boron doping was achieved by adding trimethylboron to the CH4:H2 gas mixture, the B∶C ratio was 133, 1000 and 6700 ppm. The room temperature electrical resistivity of the films decreased from >10 MΩ (undoped films) to 55 kΩ, 0.6 kΩ, and 0.3 kΩ (doped films with 133, 1000 and 6700 ppm of B, respectively). The increase in the number of human osteoblast-like MG 63 cells in 7-day-old cultures on NCD films was most apparent on the NCD films doped with 133 and 1000 ppm of B (153,000±14,000 and 152,000±10,000 cells/cm2, respectively, compared to 113,000±10,000 cells/cm2 on undoped NCD films). As measured by ELISA per mg of total protein, the cells on NCD with 133 and 1000 ppm of B also contained the highest concentrations of collagen I and alkaline phosphatase, respectively. On the NCD films with 6700 ppm of B, the cells contained the highest concentration of focal adhesion protein vinculin, and the highest amount of collagen I was adsorbed. The concentration of osteocalcin also increased with increasing level of B doping. The cell viability on all tested NCD films was almost 100%. Measurements of the concentration of ICAM-1, i.e. an immunoglobuline adhesion molecule binding inflammatory cells, suggested that the cells on the NCD films did not undergo significant immune activation. Thus, the potential of NCD films for bone tissue regeneration can be further enhanced and tailored by B doping and that B doping up to metallic-like levels is not detrimental for cells

    Echocardiographic features of PFOs and paradoxical embolism: a complicated puzzle

    No full text
    Patent foramen ovale (PFO) is a residual, oblique, slit or tunnel like communication in the atrial septum that persists into adulthood. It is usually an incidental finding with no clinical repercussions. Nevertheless, recent evidence supports the association between the presence of a PFO and a number of clinical conditions, most notably cryptogenic stroke (CS). There is enough evidence that paradoxical embolism is a mechanism which can explain this association. Patient characteristics and certain echocardiography-derived anatomical and hemodynamic features of PFO provide great assistance in estimating the probability of paradoxical embolism. In this review, we initially describe PFO embryology and anatomy. We extensively present the available data on clinical, anatomical and hemodynamic features of PFOs which have been correlated with increased likelihood of paradoxical embolism and recent evidence of therapeutic management. © 2018, Springer Nature B.V

    Favorable effects of concord grape juice on endothelial function and arterial stiffness in healthy smokers

    No full text
    Background Smoking is associated with impaired vascular function. Concord grape juice (CGJ), a rich source of flavonoids, can modify cardiovascular risk factors. Endothelial function and arterial stiffness are surrogate markers of arterial health. We examined the impact of CGJ on arterial wall properties in healthy smokers. Methods We studied the effect of a 2-week oral treatment with CGJ in 26 healthy smokers on 3 occasions (day 0 (baseline), day 7, and day 14) in a randomized, placebo-controlled, double-blind, crossover study. Measurements were taken before (pSm), immediately after (Sm0), and 20 minutes after (Sm20) cigarette smoking. Endothelial function was evaluated by flowmediated dilation (FMD) of the brachial artery. Carotid-femoral pulse wave velocity (PWV) was measured as an index of aortic stiffness. Results Compared with placebo, treatment with CGJ resulted in a significant improvement in pSm values of FMD (P = 0.02) and PWV (P = 0.04). At baseline, smoking decreased FMD in both the CGJ group (P &lt; 0.001) and the placebo group (P &lt; 0.001). Compared with placebo, CGJ treatment prevented the acute smoking-induced decrease in FMD on day 7 (P = 0.02) and day 14 (P &lt; 0.001). Moreover, at baseline, smoking induced a significant elevation in PWV in both the CGJ group (P = 0.02) and the placebo group (P = 0.04). Treatment with CGJ prevented the smoking-induced elevation in PWV on day 7 (P = 0.003) and day 14 (P &lt; 0.001). Conclusions CGJ consumption improved endothelial function and vascular elastic properties of the arterial tree in healthy smokers and attenuated acute smoking-induced impairment of arterial wall properties. © American Journal of Hypertension, Ltd 2013

    Smoking and atherosclerosis: Mechanisms of disease and new therapeutic approaches

    No full text
    It has been clear that at least 1 billion adults worldwide are smokers and at least 700 million children are passive smokers at home. Smoking exerts a detrimental effect to many organ systems and is responsible for illnesses such as lung cancer, pneumonia, chronic obstructive pulmonary disease, cancer of head and neck, cancer of the urinary and gastrointestinal tract, periodontal disease, cataract and arthritis. Additionally, smoking is an important modifiable risk factor for the development of cardiovascular disease such as coronary artery disease, stable angina, acute coronary syndromes, sudden death, stroke, peripheral vascular disease, congestive heart failure, erectile dysfunction and aortic aneurysms via initiation and progression of atherosclerosis. A variety of studies has proved that cigarette smoking induces oxidative stress, vascular inflammation, platelet coagulation, vascular dysfunction and impairs serum lipid pro-file in both current and chronic smokers, active and passive smokers and results in detrimental effects on the cardiovascular system. The aim of this review is to depict the physical and biochemical properties of cigarette smoke and, furthermore, elucidate the main pathophysiological mechanisms of cigarette-induced atherosclerosis and overview the new therapeutic approaches for smoking cessation and augmentation of cardiovascular health. © 2014 Bentham Science Publishers

    A facile avenue to conductive polymer brushes via cyclopentadiene-maleimide Diels-Alder ligation

    No full text
    Cyclopentadienyl end-capped poly(3-hexylthiophene) was employed to fabricate conductive surface tethered polymer brushes via a facile route based on cyclopentadiene-maleimide Diels-Alder ligation. The efficient nature of the Diels-Alder ligation was further combined with a biomimetic polydopamine- assisted functionalization of surfaces, making it an access route of choice for P3HT surface immobilization. © 2013 The Royal Society of Chemistry
    corecore