17 research outputs found

    Induction of Foxp3-Expressing Regulatory T-Cells by Donor Blood Transfusion Is Required for Tolerance to Rat Liver Allografts

    Get PDF
    BACKGROUND:Donor-specific blood transfusion (DST) prior to solid organ transplantation has been shown to induce long-term allograft survival in the absence of immunosuppressive therapy. Although the mechanisms underlying DST-induced allograft tolerance are not well defined, there is evidence to suggest DST induces one or more populations of antigen-specific regulatory cells that suppress allograft rejection. However, neither the identity nor the regulatory properties of these tolerogenic lymphocytes have been reported. Therefore, the objective of this study was to define the kinetics, phenotype and suppressive function of the regulatory cells induced by DST alone or in combination with liver allograft transplantation (LTx). METHODOLOGY/PRINCIPAL FINDINGS:Tolerance to Dark Agouti (DA; RT1(a)) rat liver allografts was induced by injection (iv) of 1 ml of heparinized DA blood to naïve Lewis (LEW; RT1(l)) rats once per week for 4 weeks prior to LTx. We found that preoperative DST alone generates CD4(+) T-cells that when transferred into naïve LEW recipients are capable of suppressing DA liver allograft rejection and promoting long-term survival of the graft and recipient. However, these DST-generated T-cells did not express the regulatory T-cell (Treg) transcription factor Foxp3 nor did they suppress alloantigen (DA)-induced activation of LEW T-cells in vitro suggesting that these lymphocytes are not fully functional regulatory Tregs. We did observe that DST+LTx (but not DST alone) induced the time-dependent formation of CD4(+)Foxp3(+) Tregs that potently suppressed alloantigen-induced activation of naïve LEW T-cells in vitro and liver allograft rejection in vivo. Finally, we present data demonstrating that virtually all of the Foxp3-expressing Tregs reside within the CD4(+)CD45RC(-) population whereas in which approximately 50% of these Tregs express CD25. CONCLUSIONS/SIGNIFICANCE:We conclude that preoperative DST, in the absence of liver allograft transplantation, induces the formation of CD4(+) T-cells that are not themselves Tregs but give rise directly or indirectly to fully functional CD4(+)CD45RC(-)Foxp3(+)Tregs when transferred into MHC mismatched recipients prior to LTx. These Tregs possess potent suppressive activity and are capable of suppressing acute liver allograft rejection. Understanding the mechanisms by which preoperative DST induces the generation of tolerogenic Tregs in the presence of alloantigens may lead to the development of novel antigen-specific immunological therapies for the treatment of solid organ rejection

    Perioperative blood transfusion is associated with a gene transcription profile characteristic of immunosuppression: a prospective cohort study

    Get PDF
    INTRODUCTION Blood transfusion in the perioperative period has frequently been associated with an excess of nosocomial infections. Whilst transfused whole blood induces specific host immune alteration that may predispose to nosocomial infections, the immunomodulating properties associated with leukodepleted blood remain incompletely understood. In this study, we explore the hypothesis that the transfusion of leukodepleted allogeneic blood during or following major gastrointestinal surgery is associated with an immunosuppressed phenotype, which may in turn predispose to postoperative infectious complications. METHODS Patients aged over 45 years undergoing scheduled inpatient major gastrointestinal surgery were recruited. Gene expression profiles of specific inflammatory genes were assayed from blood collected preoperatively, at 24 and at 48 hours after surgery. Genes were selected based on their ability to represent specific immune pathways. Gene expression was quantified using quantitative real-time polymerase chain reaction (qRT-PCR) to measure messenger RNA (mRNA) levels. Postoperative infections were documented using predefined criteria. RESULTS One hundred and nineteen patients were recruited. Fifteen (13%) patients required blood transfusion within 24 hours of surgery, 44 (37%) patients developed infections and 3 (2%) patients died prior to discharge. Patients receiving a blood transfusion were more likely to develop postoperative infections (P =0.02) and to have lower tumour necrosis factor alpha (TNFα), interleukin (IL)-12, IL-23 and RAR-related orphan receptor gamma T (RORγt) gene expression in the postoperative period (P <0.05). The TNFα/IL-10 mRNA ratio at 24 hours (P =0.0006) and at 48 hours (P =0.01) was lower in patients receiving a blood transfusion over this period. Multivariable analysis confirmed that these observations were independent of the severity of the surgical insult. CONCLUSIONS An association between an immunosuppressive pattern of gene expression and blood transfusion following major elective gastrointestinal surgery is described. This gene expression profile includes a reduction in the activity of innate immunity and T helper cell type 1 (Th1) and T helper cell type 17 (Th17) pathways in those patients receiving a blood transfusion. Blood transfusion was also associated with an excess of infectious complications in this cohort. A mechanistic link is suggested but not proven

    Pretransplantation blood transfusion revisited

    No full text
    BACKGROUND: Blood transfusion before organ transplantation has a beneficial effect on allograft survival; the mechanism of this effect has remained a mystery. In murine models, the presence of common histocompatibility antigens in the blood donor and the recipient favors the induction of allograft tolerance. METHODS: To investigate the effect of HLA compatibility between blood donor and recipient on the induction of allograft tolerance, we determined the relative frequency of cytotoxic T-lymphocyte precursors specific for donor cells before and at several times after blood transfusion in 23 patients awaiting a first renal transplant. We correlated the results with the presence of shared HLA antigens. RESULTS: T-cell nonresponsiveness against donor cells developed after blood transfusion in 10 of the 23 patients. Tolerance developed only if the blood donor and the recipient had one HLA haplotype or at least one HLA-B and one HLA-DR antigen in common (as was observed in 9 of these 10 patients). Tolerance developed relatively late after blood transfusion (one to two months) and was long-lasting. No decline in the T-cell response against donor alloantigens was observed in any of the 13 patients who received transfusions without having HLA-antigen compatibility with the donor. CONCLUSIONS: Blood transfusion in which there is a common HLA haplotype or shared HLA-B and HLA-DR antigens induces tolerance to donor antigens. This finding may lead to the development of new strategies with which to induce tolerance for transplantation after blood transfusion. Perhaps transplant donors will be selected not only by HLA-antigen matching, but also on the basis of acceptable HLA-antigen mismatches associated with T-cell non-responsiveness induced by selected blood transfusio

    Treatment of hereditary angioedema with nanofiltered C1-esterase inhibitor concentrate (Cetor (R)): Multi-center phase II and III studies to assess pharmacokinetics, clinical efficacy and safety

    No full text
    From 1997, plasma-derived C1-inhibitor concentrate (Cetor (R)) has been available to HAE and AAE patients. Recently, a virus reducing 15 nm nanofiltration step has been introduced in the production process. A randomized, double-blind controlled cross-over study was performed to compare the pharmacokinetics (PK) of nanofiltered (C1-INH-NF) with conventional C1-inhibitor (C1-INH). Efficacy and safety were investigated in an open-label, on-demand and a prophylactic study. No differences in pharmacokinetic parameters between C1-INH and C1-INH-NF were found (13 non-symptomatic HAE patients). Both C1-inhibitor products equally increased plasma C4 levels. In the on-demand study, 14 acute angioedema attacks in 8 patients were analyzed. In the prophylactic study, 1 ME and 5 RAE patients experienced in total 31 attacks during 748 observation days. In total 180,000 units of C1-INH-NF were administered. No product-related adverse events occurred, and no anti-C1-antibodies were induced. Nanofiltration in the production process of C1-inhibitor did not affect the pharmacokinetics, efficacy, and safety. (C) 2011 Elsevier Inc. All rights reserved
    corecore