589 research outputs found

    Lock-in of the vortex-induced vibrations of a long tensioned beam in shear flow

    Get PDF
    The occurrence of lock-in, defined as the local synchronization between the vortex shedding frequency and the cross-flow structural vibration frequency, is investigated in the case of a tensioned beam of length to diameter ratio 200, free to move in both the in-line and cross-flow directions, and immersed in a linear shear current. Direct numerical simulation is employed at three Reynolds numbers, from 110 to 1100, so as to include the transition to turbulence in the wake. The Reynolds number influences the response amplitudes, but in all cases we observed similar fluid-structure interaction mechanisms, resulting in high-wavenumber vortex-induced vibrations consisting of a mixture of standing and traveling wave patterns. Lock-in occurs in the high oncoming velocity region, over at least 30% of the cylinder length. In the case of multi-frequency response, at any given spanwise location lock-in is principally established at one of the excited vibration frequencies, usually the locally predominant one. The spanwise patterns of the force and added mass coefficients exhibit different behaviors within the lock-in versus the non-lock-in region. The spanwise zones where the flow provides energy to excite the structural vibrations are located mainly within the lock-in region, while the flow damps the structural vibrations in the non-lock-in region

    Multi-frequency vortex-induced vibrations of a long tensioned beam in linear and exponential shear flows

    Get PDF
    The multi-frequency vortex-induced vibrations of a cylindrical tensioned beam of aspect ratio 200, free to move in the in-line and cross-flow directions within first a linearly and then an exponentially sheared current are investigated by means of direct numerical simulation, at a Reynolds number equal to 330. The shape of the inflow profile impacts the spectral content of the mixed standing traveling wave structural responses: narrowband vibrations are excited within the lock-in area, which is limited to a single region lying in the high flow velocity zone, for the linear shear case; in contrast, the lock-in condition occurs at several spanwise locations in the exponential shear case, resulting in broadband responses, containing a wide range of excited frequencies and spatial wavenumbers. The broadband in-line and cross-flow vibrations occurring for the exponential shear current have a phase difference that lies within a specific range along the entire span; this differs from the phase drift noted for narrowband responses in linear shear flow. Lower vibration amplitudes, time-averaged and fluctuating in-line force coefficients are observed for the exponential shear current. The cross-flow force coefficient has comparable magnitude for both inflow profiles along the span, except in zones where the broadband vibrations are under the lock-in condition but not the narrowband ones. As in the narrowband case, the fluid forces associated with the broadband responses are dominated by high frequencies related to high-wavenumber vibration components. Considerable variability of the effective added mass coefficients along the span is noted in both cases

    On the validity of the independence principle applied to the vortex-induced vibrations of a flexible cylinder inclined at 60 degrees

    Get PDF
    The vortex-induced vibrations (VIV) of a flexible cylinder inclined at 60 degrees are investigated by means of direct numerical simulation, at a Reynolds number equal to 500, based on the cylinder diameter and inflow velocity. The cylinder has a circular cross-section and a length to diameter aspect ratio equal to 50; it is modeled as a tension-dominated structure which is free to oscillate in the in-line and cross-flow directions. The behavior of the coupled fluid–structure system is examined for two values of the tension. Particular attention is paid to the validity of the independence principle (IP) which states that the inclined and normal-incidence body cases are comparable if the inflow velocity normal component is used to scale the physical quantities. The flexible cylinder exhibits regular VIV for both values of the tension. In the high tension configuration, where the in-line bending of the structure remains small, the IP is shown to be valid for the prediction of the cylinder responses and the fluid forces. In contrast, in the lower-tension configuration, the behavior of the fluid–structure system deviates from the IP. It is shown that this deviation is connected to the larger in-line bending of the structure which leads to considerably different profiles of the flow velocity locally perpendicular to the body in the inclined and normal cylinder cases. Since the system behavior appears to be mainly driven by this component of the flow, the profile modification induced by the larger in-line bending results in distinct responses: multi-frequency vibrations are observed in the inclined cylinder case whereas mono-frequency oscillations of larger amplitudes develop at normal incidence

    Lipids in liver failure syndromes: a focus on eicosanoids, specialized pro-resolvinglipid mediators and lysophospholipids.

    Get PDF
    Lipids are organic compounds insoluble in water with a variety of metabolic and non-metabolic functions. They not only represent an efficient energy substrate but can also act as key inflammatory and anti-inflammatory molecules as part of a network of soluble mediators at the interface of metabolism and the immune system. The role of endogenous bioactive lipid mediators has been demonstrated in several inflammatory diseases (rheumatoid arthritis, inflammatory bowel disease, atherosclerosis, cancer). The liver is unique in providing balanced immunotolerance to the exposure of bacterial components from the gut transiting through the portal vein and the lymphatic system. This balance is abruptly deranged in liver failure syndromes such as acute liver failure and acute-on-chronic liver failure. In these syndromes, researchers have recently focused on bioactive lipid mediators by global metabonomic profiling and uncovered the pivotal role of these mediators in the immune dysfunction observed in liver failure syndromes explaining the high occurrence of sepsis and subsequent organ failure. Among endogenous bioactive lipids, the mechanistic actions of three classes (eicosanoids, pro-resolving lipid mediators and lysophospholipids) in the pathophysiological modulation of liver failure syndromes will be the topic of this narrative review. Furthermore, the therapeutic potential of lipid-immune pathways will be described

    Macrophages in Chronic Liver Failure: Diversity, Plasticity and Therapeutic Targeting

    Get PDF
    Chronic liver injury results in immune-driven progressive fibrosis, with risk of cirrhosis development and impact on morbidity and mortality. Persistent liver cell damage and death causes immune cell activation and inflammation. Patients with advanced cirrhosis additionally experience pathological bacterial translocation, exposure to microbial products and chronic engagement of the immune system. Bacterial infections have a high incidence in cirrhosis, with spontaneous bacterial peritonitis being the most common, while the subsequent systemic inflammation, organ failure and immune dysregulation increase the mortality risk. Tissue-resident and recruited macrophages play a central part in the development of inflammation and fibrosis progression. In the liver, adipose tissue, peritoneum and intestines, diverse macrophage populations exhibit great phenotypic and functional plasticity determined by their ontogeny, epigenetic programming and local microenvironment. These changes can, at different times, promote or ameliorate disease states and therefore represent potential targets for macrophage-directed therapies. In this review, we discuss the evidence for macrophage phenotypic and functional alterations in tissue compartments during the development and progression of chronic liver failure in different aetiologies and highlight the potential of macrophage modulation as a therapeutic strategy for liver disease

    Gradient-Free Stochastic Sensitivity Analysis of the Shipboard Power System

    Get PDF
    Sensitivity analysis results are useful both for the early design stage – where the parametric space can be substantially reduced – but also in operating conditions, e.g. of the future electric ship, resulting in reduced operational costs and increased reliability. Here we discuss variance-based methods to analyze the sensitivity of stochastic electro-mechanical systems with multirate dynamics. We present results for an illustrative example and for a model of an integrated power system.United States. Office of Naval Research (N00014-02-1-0623); United States. Office of Naval Research (N00014-07-1-0846); Massachusetts Institute of Technology. Sea Grant College Program (NA060AR4170019 NOAA/DOC

    TAM receptors in the pathophysiology of liver disease

    Get PDF
    TAM receptors (Tyro3, Axl and MerTK) are a family of tyrosine kinase receptors that are expressed in a variety of cell populations, including liver parenchymal and non-parenchymal cells. These receptors are vital for immune homeostasis, as they regulate the innate immune response by suppressing inflammation via toll-like receptor inhibition and by promoting tissue resolution through efferocytosis. However, there is increasing evidence indicating that aberrant TAM receptor signaling may play a role in pathophysiological processes in the context of liver disease. This review will explore the roles of TAM receptors and their ligands in liver homeostasis as well as a variety of disease settings, including acute liver injury, steatosis, fibrosis, cirrhosis-associated immune dysfunction and hepatocellular carcinoma. A better understanding of our current knowledge of TAM receptors in liver disease may identify new opportunities for disease monitoring as well as novel therapeutic targets. Nonetheless, this review also aims to highlight areas where further research on TAM receptor biology in liver disease is required
    • …
    corecore