12 research outputs found

    Protein-protein interaction based on pairwise similarity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein-protein interaction (PPI) is essential to most biological processes. Abnormal interactions may have implications in a number of neurological syndromes. Given that the association and dissociation of protein molecules is crucial, computational tools capable of effectively identifying PPI are desirable. In this paper, we propose a simple yet effective method to detect PPI based on pairwise similarity and using only the primary structure of the protein. The PPI based on Pairwise Similarity (PPI-PS) method consists of a representation of each protein sequence by a vector of pairwise similarities against large subsequences of amino acids created by a shifting window which passes over concatenated protein training sequences. Each coordinate of this vector is typically the E-value of the Smith-Waterman score. These vectors are then used to compute the kernel matrix which will be exploited in conjunction with support vector machines.</p> <p>Results</p> <p>To assess the ability of the proposed method to recognize the difference between "<it>interacted</it>" and "<it>non-interacted</it>" proteins pairs, we applied it on different datasets from the available yeast <it>saccharomyces cerevisiae </it>protein interaction. The proposed method achieved reasonable improvement over the existing state-of-the-art methods for PPI prediction.</p> <p>Conclusion</p> <p>Pairwise similarity score provides a relevant measure of similarity between protein sequences. This similarity incorporates biological knowledge about proteins and it is extremely powerful when combined with support vector machine to predict PPI.</p

    Interactions of aromatic mannosyl disulfide derivatives with Concanavalin A: synthesis, thermodynamic and NMR spectroscopy studies

    No full text
    α-D-Mannopyranosyl units were attached to an aromatic scaffold through disulfide linkages to obtain mono- to trivalent glycosylated ligands for lectin binding studies. Isothermal titration calorimetric (ITC) measurements indicated that binding affinities of these derivatives to Concanavalin A (Con A) were comparable to or slightly higher than that of methyl α-D-mannopyranoside (Ka values in the range of 104 M−1). The stoichiometries of the lectin-ligand complexes were in agreement with the formal valencies (1-3) of the respective ligands indicating cross-linking in interactions with the di- and trivalent derivatives. Multivalency effects could not, however, be observed with the latter. These ligands were shown to bind to the carbohydrate binding site of Con A using saturation transfer difference (STD) NMR competition experiments

    Mesenchymal stem cell-based immunomodulation in allogeneic heterotopic heart-lung transplantation.

    No full text
    Mesenchymal stem cells are able to differentiate in various cell lineages and they have shown immunomodulatory properties in vitro, altering the cytokine secretion profile of T helper, T effector and dendritic cells and stimulating natural killer cells towards an anti-inflammatory and tolerant phenotype. In vivo they prolong skin allograft survival and may decrease graft-versus-host disease after hematopoietic stem cell transplants. In this work we studied the effects of mesenchymal stem cell treatment in an allogeneic heterotopic heart-lung transplant model. The following experimental groups were formed: A) Control B) Immunosuppressive therapy (Cyclosporine A) C) Mesenchymal stem-cell intravenous infusion D) Mesenchymal stem-cell infusion plus immunosuppressive treatment. The infusion of mesenchymal stem cells improved the mean graft survival up to 14.5±3.7 days with respect to the control group (3±0.6 days). Treatment with Cyclosporine A plus mesenchymal stem cells (group D) produced a mean survival time of 18.25±4.9 days, and was not significantly different to the results for group B (21.75±3.5 days). Furthermore, in the immunosuppressive treatment and the mesenchymal stem cell treatment, histological analysis revealed a reduction in the grade of rejection in heart and lung grafts. This decrease was most significant in group D. In conclusion, mesenchymal stem cells alone or in combination with Cyclosporine A were able to prolong graft survival time. These data suggest that, in vivo, mesenchymal stem cells retain their ability, already shown in vitro, to suppress lymphocyte activation and proliferation
    corecore