5 research outputs found

    Reversible primes

    Full text link
    For an nn-bit positive integer aa written in binary as a=∑j=0n−1Δj(a) 2j a = \sum_{j=0}^{n-1} \varepsilon_{j}(a) \,2^j where, Δj(a)∈{0,1}\varepsilon_j(a) \in \{0,1\}, j∈{0,
,n−1}j\in\{0, \ldots, n-1\}, Δn−1(a)=1\varepsilon_{n-1}(a)=1, let us define a←=∑j=0n−1Δj(a) 2n−1−j, \overleftarrow{a} = \sum_{j=0}^{n-1} \varepsilon_j(a)\,2^{n-1-j}, the digital reversal of aa. Also let Bn={2n−1≀a<2n: a odd}.\mathcal{B}_n = \{2^{n-1}\leq a<2^n:~a \text{ odd}\}. With a sieve argument, we obtain an upper bound of the expected order of magnitude for the number of p∈Bnp \in \mathcal{B}_n such that pp and p←\overleftarrow{p} are prime. We also prove that for sufficiently large nn, ∣{a∈Bn: max⁥{Ω(a),Ω(a←)}≀8}âˆŁâ‰„c 2nn2, \left|\{a \in \mathcal{B}_n:~ \max \{\Omega (a), \Omega (\overleftarrow{a})\}\le 8 \}\right| \ge c\, \frac{2^n}{n^2}, where Ω(n)\Omega(n) denotes the number of prime factors counted with multiplicity of nn and c>0c > 0 is an absolute constant. Finally, we provide an asymptotic formula for the number of nn-bit integers aa such that aa and a←\overleftarrow{a} are both squarefree. Our method leads us to provide various estimates for the exponential sum \sum_{a \in \mathcal{B}_n} \exp\left(2\pi i (\alpha a + \vartheta \overleftarrow{a})\right) \quad(\alpha,\vartheta \in\mathbb{R}). $

    Reversible primes

    No full text
    International audienceFor an nn-bit positive integer aa written in binary as a=∑j=0n−1Δj(a) 2j a = \sum_{j=0}^{n-1} \varepsilon_{j}(a) \,2^j where, Δj(a)∈{0,1}\varepsilon_j(a) \in \{0,1\}, j∈{0,
,n−1}j\in\{0, \ldots, n-1\}, Δn−1(a)=1\varepsilon_{n-1}(a)=1, let us define a←=∑j=0n−1Δj(a) 2n−1−j, \overleftarrow{a} = \sum_{j=0}^{n-1} \varepsilon_j(a)\,2^{n-1-j}, the digital reversal of aa. Also let Bn={2n−1≀a0\mathcal{B}_n = \{2^{n-1}\leq a 0 is an absolute constant. Finally, we provide an asymptotic formula for the number of nn-bit integers aa such that aa and a←\overleftarrow{a} are both squarefree. Our method leads us to provide various estimates for the exponential sum \sum_{a \in \mathcal{B}_n} \exp\left(2\pi i (\alpha a + \vartheta \overleftarrow{a})\right) \quad(\alpha,\vartheta \in\mathbb{R}). $

    Reversible primes

    No full text
    International audienceFor an nn-bit positive integer aa written in binary as a=∑j=0n−1Δj(a) 2j a = \sum_{j=0}^{n-1} \varepsilon_{j}(a) \,2^j where, Δj(a)∈{0,1}\varepsilon_j(a) \in \{0,1\}, j∈{0,
,n−1}j\in\{0, \ldots, n-1\}, Δn−1(a)=1\varepsilon_{n-1}(a)=1, let us define a←=∑j=0n−1Δj(a) 2n−1−j, \overleftarrow{a} = \sum_{j=0}^{n-1} \varepsilon_j(a)\,2^{n-1-j}, the digital reversal of aa. Also let Bn={2n−1≀a0\mathcal{B}_n = \{2^{n-1}\leq a 0 is an absolute constant. Finally, we provide an asymptotic formula for the number of nn-bit integers aa such that aa and a←\overleftarrow{a} are both squarefree. Our method leads us to provide various estimates for the exponential sum \sum_{a \in \mathcal{B}_n} \exp\left(2\pi i (\alpha a + \vartheta \overleftarrow{a})\right) \quad(\alpha,\vartheta \in\mathbb{R}). $
    corecore