9 research outputs found

    Permanent neonatal diabetes in <em>INS</em><sup>C94Y</sup> transgenic pigs.

    No full text
    Mutations in the insulin (INS) gene may cause permanent neonatal diabetes mellitus (PNDM). Ins2 mutant mouse models provided important insights into the disease mechanisms of PNDM but have limitations for translational research. To establish a large animal model of PNDM, we generated INSC94Y transgenic pigs. A line expressing high levels of INSC94Y mRNA (70-86% of wildtype INS transcripts) exhibited elevated blood glucose soon after birth but unaltered beta-cell mass at the age of 8 days. At 4.5 months, INSC94Y transgenic pigs exhibited 41% reduced body weight, 72% decreased beta-cell mass (-53% relative to body weight), and 60% lower fasting insulin levels compared with littermate controls. beta-cells of INSC94Y transgenic pigs showed a marked reduction of insulin secretory granules and severe dilation of the endoplasmic reticulum. Cataract development was already visible in 8-day-old INSC94Y transgenic pigs and became more severe with increasing age. Diabetes-associated pathological alterations of kidney and nervous tissue were not detected during the observation period of 1 year. The stable diabetic phenotype and its rescue by insulin treatment make the INSC94Y transgenic pig an attractive model for insulin supplementation and islet transplantation trials, and for studying developmental consequences of maternal diabetes mellitus

    Large Animal Models of Diabetes

    Full text link
    Safe and reliable large animal diabetes models are a key prerequisite for advanced preclinical studies on diabetes. Chemical induction is the standard model of diabetes in rodents but is often critiqued in higher animals due to reduced efficacy, relevant side effects, and inadequate mortality rate. In this chapter, we aim to describe both pharmacological and surgical approaches for reproducible and safe diabetes models in minipigs and primates. In addition, genetically modified pig models for diabetes research are described

    The Munich MIDY Pig Biobank - A unique resource for studying organ crosstalk in diabetes.

    No full text
    Objective: The prevalence of diabetes mellitus and associated complications is steadily increasing. As a resource for studying systemic consequences of chronic insulin insufficiency and hyperglycemia, we established a comprehensive biobank of long-term diabetic INS C94Y transgenic pigs, a model of mutant INS gene-induced diabetes of youth (MIDY), and of wild-type (WT) littermates. Methods: Female MIDY pigs (n = 4) were maintained with suboptimal insulin treatment for 2 years, together with female WT littermates (n = 5). Plasma insulin, C-peptide and glucagon levels were regularly determined using specific immunoassays. In addition, clinical chemical, targeted metabolomics, and lipidomics analyses were performed. At age 2 years, all pigs were euthanized, necropsied, and a broad spectrum of tissues was taken by systematic uniform random sampling procedures. Total beta cell volume was determined by stereological methods. A pilot proteome analysis of pancreas, liver, and kidney cortex was performed by label free proteomics. Results: MIDY pigs had elevated fasting plasma glucose and fructosamine concentrations, C-peptide levels that decreased with age and were undetectable at 2 years, and an 82% reduced total beta cell volume compared to WT. Plasma glucagon and beta hydroxybutyrate levels of MIDY pigs were chronically elevated, reflecting hallmarks of poorly controlled diabetes in humans. In total, &sim;1900 samples of different body fluids (blood, serum, plasma, urine, cerebrospinal fluid, and synovial fluid) as well as &sim;17,000 samples from &sim;50 different tissues and organs were preserved to facilitate a plethora of morphological and molecular analyses. Principal component analyses of plasma targeted metabolomics and lipidomics data and of proteome profiles from pancreas, liver, and kidney cortex clearly separated MIDY and WT samples. Conclusions: The broad spectrum of well-defined biosamples in the Munich MIDY Pig Biobank that will be available to the scientific community provides a unique resource for systematic studies of organ crosstalk in diabetes in a multi-organ, multi-omics dimension

    Animal models of obesity and diabetes mellitus.

    Get PDF
    More than one-third of the worldwide population is overweight or obese and therefore at risk of developing type 2 diabetes mellitus. In order to mitigate this pandemic, safer and more potent therapeutics are urgently required. This necessitates the continued use of animal models to discover, validate and optimize novel therapeutics for their safe use in humans. In order to improve the transition from bench to bedside, researchers must not only carefully select the appropriate model but also draw the right conclusions. In this Review, we consolidate the key information on the currently available animal models of obesity and diabetes and highlight the advantages, limitations and important caveats of each of these models

    Animal models of obesity and diabetes mellitus

    No full text
    corecore