187 research outputs found

    Generalized multi-photon quantum interference

    Full text link
    Non-classical interference of photons lies at the heart of optical quantum information processing. This effect is exploited in universal quantum gates as well as in purpose-built quantum computers that solve the BosonSampling problem. Although non-classical interference is often associated with perfectly indistinguishable photons this only represents the degenerate case, hard to achieve under realistic experimental conditions. Here we exploit tunable distinguishability to reveal the full spectrum of multi-photon non-classical interference. This we investigate in theory and experiment by controlling the delay times of three photons injected into an integrated interferometric network. We derive the entire coincidence landscape and identify transition matrix immanants as ideally suited functions to describe the generalized case of input photons with arbitrary distinguishability. We introduce a compact description by utilizing a natural basis which decouples the input state from the interferometric network, thereby providing a useful tool for even larger photon numbers

    Integrated data requirements for natural resource management

    Get PDF
    We do not have sufficient data to adequately describe the integrated socio-ecologicalsystems that support us. It is prohibitively expensive to collect enough data to describe all,so it is important to think strategically about how to (i) use the information we do have and (ii) prioritise the collection of new data. We aim to help by finding efficient ways of improving the information that is available for policy-makers to generate better human–nature outcomes

    Neutron Bang Time Detector Based on a Light Pipe

    Get PDF
    A neutron bang time detector consisting of a scintillator, light pipe, photomultiplier tube (PMT), and high-bandwidth oscilloscope has been implemented on the 60-beam, 30-kJ OMEGA Laser Facility at the University of Rochester's Laboratory for Laser Energetics. Light from the scintillator, located 23 cm from the target, is transmitted outside the target bay through a 9.6-m-long, 2-in.-diam polished stainless steel pipe to the PMT. The PMT signal is recorded by two channels of a 6-GHz, 10-GS/s Tektronix 6604 oscilloscope. The OMEGA optical fiducial pulse train is recorded on the third oscilloscope channel using a fast photodiode to provide the timing reference to the laser. The bang-time detector is absolutely calibrated in time and is able to measure bang time for neutron yields above 1 x 10{sup 9} with accuracy of better than 25 ps

    Opposing MMP-9 Expression in Mesenchymal Stromal Cells and Head and Neck Tumor Cells after Direct 2D and 3D Co-Culture

    Get PDF
    Bone marrow-derived mesenchymal stromal cells (BMSCs) respond to a variety of tumor cell-derived signals, such as inflammatory cytokines and growth factors. As a result, the inflammatory tumor microenvironment may lead to the recruitment of BMSCs. Whether BMSCs in the tumor environment are more likely to promote tumor growth or tumor suppression is still controversial. In our experiments, direct 3D co-culture of BMSCs with tumor cells from the head and neck region (HNSCC) results in strong expression and secretion of MMP-9. The observed MMP-9 secretion mainly originates from BMSCs, leading to increased invasiveness. In addition to our in vitro data, we show in vivo data based on the chorioallantoic membrane (CAM) model. Our results demonstrate that MMP-9 induces hemorrhage and increased perfusion in BMSC/HNSCC co-culture. While we had previously outlined that MMP-9 expression and secretion originate from BMSCs, our data showed a strong downregulation of MMP-9 promoter activity in HNSCC cells upon direct contact with BMSCs using the luciferase activity assay. Interestingly, the 2D and 3D models of direct co-culture suggest different drivers for the downregulation of MMP-9 promoter activity. Whereas the 3D model depicts a BMSC-dependent downregulation, the 2D model shows cell density-dependent downregulation. In summary, our data suggest that the direct interaction of HNSCC cells and BMSCs promotes tumor progression by significantly facilitating angiogenesis via MMP-9 expression. On the other hand, data from 3D and 2D co-culture models indicate opposing regulation of the MMP-9 promoter in tumor cells once stromal cells are involved

    Core conditions for alpha heating attained in direct-drive inertial confinement fusion

    Get PDF
    It is shown that direct-drive implosions on the OMEGA laser have achieved core conditions that would lead to significant alpha heating at incident energies available on the National Ignition Facility (NIF) scale. The extrapolation of the experimental results from OMEGA to NIF energy assumes only that the implosion hydrodynamic efficiency is unchanged at higher energies. This approach is independent of the uncertainties in the physical mechanism that degrade implosions on OMEGA, and relies solely on a volumetric scaling of the experimentally observed core conditions. It is estimated that the current best-performing OMEGA implosion [Regan et al., Phys. Rev. Lett. 117, 025001 (2016)10.1103/PhysRevLett.117.025001] extrapolated to a 1.9 MJ laser driver with the same illumination configuration and laser-target coupling would produce 125 kJ of fusion energy with similar levels of alpha heating observed in current highest performing indirect-drive NIF implosions.United States. Department of Energy (DE-FC02-04ER54789)United States. National Nuclear Security Administration (DE-NA0001944
    • …
    corecore